
Math 301, Characterization and uniqueness of GCDs in k[x], k a field

Let k be a field.

Theorem (6.25). Every ideal in k[x] is principal, and every nonzero ideal has a unique monic generator.

Definition. The gcd of the zero polynomial and itself is the zero polynomial. A gcd of polynomials f(x)
and g(x) (at least one of which is nonzero) is a common divisor of f and g in k[x] of maximal degree.

Proposition. Every nonzero polynomial in k[x] has a unique monic associate.

Proof. That every nonzero polynomial in k[x] has a monic associate is Proposition 6.4. We claim that it is
unique. Suppose f and g are both monic associates of h. Then f = uh and g = vh for u, v nonzero
constants in k, by Proposition 6.4, and f = (uv−1)g. Since f and g are monic, their leading coefficients are
one. On the other hand, the leading coefficient of f is uv−1. Thus uv−1 = 1, and f = g.

Proposition. Let f and g be polynomials in k[x] of the same degree. If f |g, then f and g are associate. If,
in addition, f and g are monic, then f = g.

Proof. Suppose f |g. Then there is a polynomial h ∈ k[x] such that g = fh. By Lemma 5.8(ii),
deg g = deg f + deg h. Since deg g = deg f , deg h = 0, i.e. h is a nonzero constant. Since k is a field, h
is a unit in k and thus a unit in k[x] by Proposition 6.2, proving that f and g are associates in k[x].

Suppose, in addition, that f and g are monic. In this case they must be equal, since each polynomial is
associate to a unique monic polynomial.

Theorem (6.30(i)). Let f and g be polynomials in k[x], at least one of which is nonzero. Let d be a monic
polynomial. Then d is a gcd of f and g if and only if (f, g) = (d).

Proof. If (f, g) = (d), then the argument in the text for the proof of Theorem 6.28 (analogous to Theorem
1.19) proves that d is a gcd of f and g.

Now suppose d is a gcd of f and g, and let h be the unique monic generator for (f, g). Since d divides f
and g, it divides every linear combination of f and g (by the “two out of three” rule), so d|h, and
deg d ≤ deg h by Lemma 6.1. On the other hand, since h is a common divisor of f and g, deg h ≤ deg d, by
the definition of gcd. Thus deg h = deg d. Thus h and d are monic polynomials of the same degree with
d|h. By the proposition above, d = h, and thus (f, g) = (d).

Note. This means that we can characterize a gcd of f and g as a monic polynomial of least degree that is
a linear combination of f and g.

Note. The theorem also shows that every linear combination of f and g is a multiple of d in k[x].

Corollary (6.29). Let d be a monic common divisor of f and g in k[x]. Then d is the gcd of f and g if and
only if every common divisor of f and g also divides d, i.e. if h|f and h|g, then h|d.

Proof. Let h be a common divisor of f and g.

First, suppose that every common divisor of f and g divides d. Then h|d and deg h ≤ deg g, by Lemma 6.1.
Thus d is of maximal degree among common divisors of f and g. By definition, d is a gcd of f and g.

On the other hand, suppose that d is a gcd of f and g. Then, by the theorem, we can write d as a linear
combination f and g. By the “two out of three” rule, h divides d, since h divides f and g.

Corollary (Theorem 6.30(ii)). GCDs in k[x] are unique.

Proof. This follows immediately from the theorem and from the uniqueness of monic generators for ideals
in k[x] (Theorem 6.25).


