
Math 301, Linear Congruences

Linear Congruences See pages 141-142, especially Theorem 4.17 and Examples 4.19 and 4.20.

Recall that two integers a and b are congruent modulo an integer m � 2 if m|(a� b), equivalently,
a = mk + b for some integer k.

If a and m are relatively prime integers and b is any integer, then the linear congruence ax ⌘ b modm is
solvable, i.e. there is an integer n such that an ⌘ b modm. Further, every integer of the form n+ km,
where k is an integer, is also a solution.

Proposition 4.5 ensures that adding an integer to both sides of a (true) congruence and multiplying both
sides of a congruence by an integer yield true congruences.

Example. Find all integer solutions to the linear congruence 3x ⌘ 4 mod 7.

We would like to multiply both sides of the congruence by an integer s that will “cancel” the 3. (So, in a
certain sense, we are looking for a reciprocal for 3.) This means we want 3s ⌘ 1 mod 7.

We list the multiples of 3 until we find one that is one more than a multiple of 7: 3, 6, 9, 12, 15. Since
15 = 2 · 7 + 1, 15 ⌘ 1 mod 7. Since 15 = 3 · 5, we choose s = 5. We will multiply both sides of the
congruence by s = 5, knowing that this will “cancel” the 3 on the left side, as follows:

3x ⌘ 4 mod 7

5(3x) ⌘ 5(4) mod 7

15x ⌘ 20 mod 7

x ⌘ 6 mod 7

The last step follows from the fact that 15 ⌘ 1 mod 7 and 20 ⌘ 6 mod 7.

This means that x = 6 is a solution, and any integer of the form 6 + 7k, for k 2 Z is a solution.

Let’s check that this works. First check x = 6:

3x = 3(6) = 18 = 2 · 7 + 4 ⌘ 4 mod 7

Now, let k be any integer, and check 6 + 7k:

3(6 + 7k) = 18 + 21k = (2 · 7 + 4) + 21k = 2 · 7 + 3k · 7 + 4 = 7(2 + 3k) + 4 ⌘ 4 mod 7

Example Find all solutions to the linear congruence 3x ⌘ 4 mod 44.

Our goal is to find an integer s such that 3s ⌘ 1 mod 44, knowing that, if we multiply both sides of the
congruence by such an s, the 3 will “cancel,” and we will have a solution.

As before we could list multiples of 3 until we found one that worked, but this time we will use the
Euclidean Algorithm. Since 3 and 44 are relatively prime, we know that there are integers s and t such
that 1 = 3s+ 44t. This implies that 3s = 44(�t) + 1, i.e. that 3s ⌘ 1 mod 44.

The Euclidean Algorithm I gives:

44 = 3(14) + 2

3 = 2(1) + 1

2 = 1(2)

Euclidean Algorithm II gives:

1 = 3� 2(1)

= 3� (44� 3(14))(1)

= (15)(3) + (�1)(44)

Thus s = 15 and t = �1.
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So we multiply both sides of the given linear congruence by s = 15, as follows:

3x ⌘ 4 mod 44

15(3x) ⌘ 15(4) mod 44

45x ⌘ 60 mod 44

x ⌘ 16 mod 44

We check that x = 16 is a solution:

3(16) = 48 = 44 + 4 ⌘ 4 mod 44

Further, any integer of the form 16 + 44k, where k 2 Z, will be a solution.

Note By this point, it should be clear that x = sb is a solution to ax ⌘ b mod m if s and t are integers
satisfying as+mt = 1, and that any integer of the form sb+mk, for k 2 Z, is also a solution.

Systems of Linear Congruences (p 142-143; Thm 4.21 and Ex 4.22 and 4.23)

The Chinese Remainder Theorem says that if m and m

0 are relatively prime, then the system of linear
congruences

x ⌘ b mod m

x ⌘ b

0 mod m

0

has a solution, i.e. there is an integer n such that n ⌘ b mod m and n ⌘ b

0 mod m

0. Further, if n is such a
solution, then so is every integer of the form n+mm

0
k, for k 2 Z.

Example Consider the following system of linear congruences:

x ⌘ 4 mod 6

x ⌘ 3 mod 11

Suppose x is a solution to the system. (We know that such a solution exists, by the CRT.) Then
x = 6y + 4, for some integer y, since x ⌘ 4 mod 6. Thus

6y + 4 ⌘ 3 mod 11

6y ⌘ �1 mod 11

6y ⌘ 10 mod 11

To solve this linear congruence for y, we must find an integer s such that 6s ⌘ 1 mod 11. We list multiples
of 6: 6, 12. Since 6 · 2 = 12 = 11 + 1, we take s = 2. We multiply both sides of the congruence by s = 2:

2(6y) ⌘ 2(10) mod 11

12y ⌘ 20 mod 11

y ⌘ 9 mod 11

Thus y = 9 is a solution of 6y + 4 ⌘ 3 mod 11, and x = 6(9) + 4 = 58 is a solution of the system.

Let’s check that this works:
58 = 6(9) + 4 ⌘ 4 mod 6

58 = 11(5) + 3 ⌘ 3 mod 11

So, yes, x = 58 is a solution.

Note that we did not need to take y = 9; any integer y of the form 9 + 11k for k 2 Z will satisfy
6y + 4 ⌘ 3 mod 11. Thus any integer x = 6(9 + 11k) + 4 = 58 + 66k is a solution of the system.
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