
Math 301, Formal Polynomials and Polynomial Functions

1. Motivation

Perhaps you have seen a definition of a polynomial as a function of the form

P (x) = c0 + c1x+ · · ·+ cnx
n

where each ci is a constant (called a coefficient) and where n is a nonnegative integer.

One problem with this definition is the vagueness of the term “constant.” Are the coefficients presumed to
be integers? Real numbers? Complex numbers?

This matters when we are considering whether or not a polynomial factors. For example, does x2 − 2 factor
or not? If we are only considering integers as valid coefficients, then the answer is no. But if we allow real
numbers, then x2 − 2 = (x−

√
2)(x+

√
2) is a perfectly valid factorization. What about x2 + 1? If we only

allow real coefficients, then this polynomial does not factor, but if we allow complex coefficients, it factors
as x2 + 1 = (x− i)(x+ i).

Could the coefficients be elements of Zm? Sure, why not?

Another issue is how to define equality of polynomials. Consider f(x) = x7 + 2x− 1 and g(x) = 3x+ 6,
where the coefficients are in Z7. Are they the same or not? On one hand, we usually say that two
polynomials are the same only if they have the same coefficients, and these polynomials do not have the
same coefficients. However, if we consider them as functions Z7 → Z7, they are the same. (RQ #1 asks you
to check this: plug in x = 0, 1, 2, . . . 6, reduce modulo 7, and see that f and g agree.) So, if we want to say
that f and g are different polynomials, we cannot define polynomials as functions, because, as functions, f
and g are the same.

If polynomials are not defined as functions, what are they? What does the “x” mean, if it’s not an input?

2. Formal Polynomials

In an effort to resolve these questions, we adopt a more formal viewpoint. It will take some effort, but we
will have a precise, unambiguous definition of “polynomial” as distinct from “polynomial function.”

Given a commutative ring R, we will define the ring of polynomials with coefficients in R as a subring of
the ring of formal power series with coefficients in R.

Formal Power Series

We define the ring of formal power series over R, denoted R[[x]] to be the set of all infinite sequences
of ring elements:

R[[x]] = {(s0, s1, s2, . . . ) : si ∈ R}
The elements si of the sequence are called the coefficients of the power series. (See the top of page 197.)
Two power series (s0, s1, s2, . . . ) and (t0, t1, t2, . . . ) are equal if and only if their corresponding coefficients
are equal, i.e. si = ti for all i. (Proposition 5.6)

Note. You can think of the si as coefficients of x in

∞∑
i=0

six
i.

We define addition and multiplication of formal power series (see the bottom of page 198) and
prove that R[[x]] with these two binary operations is a commutative ring (Proposition 5.7). Note that the
additive identity is (0, 0, 0, . . . ) and the multiplicative identity is (1, 0, 0, . . . ).

RQ #2 and 3 ask you to practice adding and multiplying formal power series. Here’s an example of
multiplying power series.
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Example. Multiply σ = (1, 4, 5, 0, 0, 0, . . . ) by τ = (3, 2, 0, 0 . . . ). Using the notation in the textbook:

s0 = 1, s1 = 4, s2 = 5, si = 0 for i > 2 and t0 = 3, t1 = 2, and ti = 0 for all i > 1

We let ci be the coefficients of the product: στ = (c0, c1, c2, . . . ). We compute the coefficients one by one:

c0 =

0∑
i=0

si t0−i = s0t0 = 1 · 3 = 3

c1 =

1∑
i=0

si t1−i = s0t1 + s1t0 = 1 · 2 + 4 · 3 = 2 + 12 = 14

c2 =

2∑
i=0

si t2−i = s0t2 + s1t1 + s2t0 = 1 · 0 + 4 · 2 + 5 · 3 = 0 + 8 + 15 = 23

c3 =

3∑
i=0

si t3−i = s0t3 + s1t2 + s2t1 + s3t0 = 1 · 0 + 4 · 0 + 5 · 2 + 0 · 3 = 0 + 0 + 10 + 0 = 10

c4 =

4∑
i=0

sit4−i = s0t4 + s1t3 + s2t2 + s3t1 + s4t0 = 1 · 0 + 4 · 0 + 5 · 0 + 0 · 2 + 0 · 3 = 0

Consider cn =

n∑
i=0

sitn−i, for n ≥ 4. If i > 2 then si = 0, so sitn−i = 0. On the other hand, if i ≤ 2, then

n− i ≥ 2 > 1, so tn−i = 0 and sitn−i = 0. Thus cn = 0 for n ≥ 4.

Thus στ = (3, 14, 23, 10, 0, 0, 0, . . . ).

Formal Polynomials

We define a polynomial to be a formal power series whose coefficients are eventually all zero. (See the
bottom of page 197.) The subset of R[[x]] consisting of polynomials is a subring of R[[x]] (Corollary 5.9),
called the ring of polynomials over R and denoted R[x].

Note that this means that two polynomials are equal if and only if their corresponding coefficients are
equal (because that it what it means for two formal power series to be equal.)

We consider R as a subring of R[x] and R[[x]] by identifying r ∈ R with (r, 0, 0, . . . ) ∈ R[x] ⊂ R[[x]]. Thus
“constants” are considered polynomials.

We define the indeterminate element, denoted x, of R[x] to be the polynomial (0, 1, 0, 0, . . . ).

Using the definition of multiplication of formal power series, we compute x2, x3, x4, etc. We have:

1 = (1, 0, 0, 0, 0, 0, 0, . . . )

x = (0,1, 0, 0, 0, 0, 0, . . . )

x2 = (0, 0,1, 0, 0, 0, 0, . . . )

x3 = (0, 0, 0,1, 0, 0, 0, . . . )

x4 = (0, 0, 0, 0,1, 0, 0, . . . )

...

We show that every polynomial can be expressed as a sum of products of constants with powers of x,
recovering the familiar notation for polynomials. (See Lemma 5.10 and Proposition 5.11.) For example,

(3, 2, 6, 0, 0, . . . ) = (3, 0, 0, . . . ) + (0, 2, 0, 0, . . . ) + (0, 0, 6, 0, 0, . . . )

= (3, 0, 0, . . . ) + (2, 0, 0, . . . ) · (0, 1, 0, 0, . . . ) + (6, 0, 0, . . . ) · (0, 1, 0, . . . ) · (0, 1, 0, . . . )
= 3 + 2x + 6x2
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This is great, because we have a lot of good algebraic reflexes that allow us to manipulate polynomials
when they are written in familiar notation.

Example. The power series σ in the example above is the polynomial 1 + 4x+ 5x2 and τ is the
polynomial 3 + 2x. Their product στ is 3 + 14x+ 23x2 + 10x3, just as we expect.

Some other important terms: degree of a polynomial (page 198, see also Lemma 5.8, page 199), the zero
polynomial (the degree of which is undefined, see top of page 198), the constant term and leading
coefficient of a polynomial (bottom of page 201), a monic polynomial (bottom of page 201).

When k is a field, k[x] is a domain (Corollary 5.9(ii)), and we can construct the fraction field of k[x],
denoted k(x), and called the field of rational functions over k. (See top of page 205.)

3. Polynomial Functions

A polynomial f ∈ R[x] gives rise to a polynomial function, denoted f# : R→ R, as follows:

If f = (s0, . . . , sn, 0, 0, . . . ), then f#(a) = s0 + s1a+ s2a
2 + . . . + sna

n

This is exactly what we would get if we were to write f in the usual notation and “plug in” a for x.

Now that we have carefully defined polynomials and distinguished them from polynomial functions, we can
return to the confusing example given above: f(x) = x7 + 2x− 1 and g(x) = 3x+ 6. Considered as
polynomials in Z7[x], they are different, because their coefficients do not match. Considered as functions
Z7 → Z7 they are the same, since they always have the same outputs, given the same inputs.

The distinction between polynomials and polynomial functions also becomes apparent by counting.
Suppose we want to count the number of polynomials in Z2[x]. We have:

0, 1, x, 1 + x, x2, 1 + x2, 1 + x+ x2, . . .

There are infinitely many. (See Corollary 5.12 for a proof.) On the other hand, how many functions are
there from Z2 to Z2? Well, the only possible inputs are 0 and 1, and the only possible outputs are 0 and 1.
There are only four ways to assign outputs, so there are only four functions from Z2 to Z2. (RQ #4 asks
you to check this.)

In particular, in Zp[x], f(x) = xp − x is a nonzero polynomial, but since Fermat’s Little Theorem implies
that ap = a in for all a ∈ Zp, the associated function f# is identically zero.
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Reading Questions

Exercise 1. By plugging in all possible values of x in Z7, check that the two functions f(x) = x7 + 2x− 1
and g(x) = 3x+ 6, when considered as functions Z7 → Z7, are actually the same function.

Exercise 2. Use the definition of addition of formal power series to compute the following sums.

(a) (1, 1, 1, 1, 1, 1, . . . ) + (2, 0, 2, 0, 2, 0, . . . )

(b) (2, 0, 0, 0, . . . ) + (0, 1, 0, 0, . . . ) + (0, 0, 3, 0, 0, . . . )

Exercise 3. Use the definition of multiplication of formal power series to compute the following products.

(a) (0, 0, 0, . . . ) · (1, 2, 3, 4, . . . )

(b) (1, 0, 0, 0, . . . ) · (1, 2, 3, 4, . . . )

(c) (5, 0, 0, 0, . . . ) · (1, 2, 3, 4, . . . )

(d) (0, 1, 0, 0, . . . ) · (0, 1, 0, 0, . . . )

(e) (0, 1, 0, 0, . . . ) · (0, 0, 1, 0, . . . )

Exercise 4. Check that there are only four functions Z2 → Z2. Write input-output tables for each one.
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