
Math 301, Unit 3, Corrections and Modifications for Students

Section 7.2

Exercise 7.30 Hint: Look back at Exercise 3.15 and Exercise 7.22.

Exercise 7.36 The end of the hint should say, “. . . the polynomial p may factor in F [x].”

Theorem 7.38 To prove that E is a subring of K, it is necessary to show that 1 ∈ E, that E is closed
under subtraction, and that E is closed under multiplication. (See correction of Proposition 4.46 on the
Unit 2 Corrections and Modifications.) We show that E is closed under subtraction as follows. Take
a, b ∈ E; then 0 = g(a) = aq − a, so aq = a, and similarly bq = b. By Proposition 7.17(ii),
(a− b)q = (a+ (−b))q = aq + (−b)q. If q is odd, then clearly (−b)q = −bq, so (a− b)q = aq − bq, which
implies g(a− b) = 0, i.e. a− b ∈ E. If q is even, (−b)q = bq, but since q is a power of a prime, we must have
q = 2n and k = F2. Thus −1 = 1, and (−b)q = bq = −bq, implying, as argued above, that g(a− b) = 0 and
a− b ∈ E. To prove that E is a subfield of K, it is necessary to show that for every nonzero a ∈ E, the
multiplicative inverse of a in K, namely a−1, also lies in E. This is straightforward and does not rely on
Lemma 7.37 (nor is is appropriate to invoke Lemma 7.37, since Lemma 3.37 presumes that we are working
in a field with q elements!) Let a 6= 0 be in E. Then, 0 = g(a) = aq − a, so aq = a, and, since E is a subring
of K, it is a domain, and we may cancel to obtain aq−1 = 1. Since q ≥ 2, we have a · aq−2 = 1 in K, i.e.
a−1 = aq−2 in K. Since E is closed under multiplication and a ∈ E, we have aq−2 ∈ E, and thus a−1 ∈ E.

Example 7.41 The third sentence should begin, “By Proposition 7.20, K consists of . . . ”.

Exercise 7.39 Modify to say, “Let f(x), g(x) ∈ k[x] be nonconstant monic polynomials, where k is a
field. Show that, if g is irreducible and every root of f (in an appropriate splitting field) is also a root of g,
then f = gm for some integer m ≥ 1. Hint: Use strong induction on deg(f).” (Not deg(h).) Additional
Hint: For strong induction, first prove base case: i.e. that the claim is true if deg(f) = 1. For the inductive
step, suppose that the claim is true for every polynomial p of degree strictly less than the degree of f , and
show that the claim is true for f . (To be explicit, the inductive hypothesis is: Given a nonconstant monic
polynomial p(x) ∈ k[x] such that every root of p is a root of g, there is an integer m ≥ 1 such that p = gm.)

Section 8.1

Exercise 8.1 Hint: Disprove the statement by providing a counterexample. Salvage the statement by
proving one of the implications (either the “if” or the “only if” direction.)

Section 8.2

Lemma 8.10 In this lemma p = 2 or 3; it is not an arbitrary prime. So the result is true for Z[i] and Z[ω],
but not for arbitrary rings of cyclotomic integers.

Example 8.12 The second step of the Euclidean algorithm should be:

z = (3− i)(−10 + 15i) + (−4− 7i)

The text has (3 + 3i) instead of z, but this is a mistake.

Exercise 8.8 This exercise references Example 8.12, which has an error, as discussed above.

Section 8.3
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Proposition 8.38 There is an unmatched parentheses in the third sentence.

Proposition 8.42 The first sentence of the second paragraph of the proof should say, “It remains to
settle the case where λ 6 | yz . . . ”.

Section 8.4

Example 8.52 The very last equation in this example should read 2r − 4t+ 10s = 1.

Exercise 8.47 Perhaps it could be modified as follows, “Referring to Example 8.52, (i) the ideal
generated by the norms of generators of J1 is an ideal in Z, and hence principal. Find a generator for it.
(ii) Do the same for the other ideals J2, J3, and J4.”

Exercise 8.48 There is a sign error. The equality should read: “2 · 3 = (1 +
√
−5)(1−

√
−5)”.


