W 6.1: 26 Let k be a field, and let f(x), $g(x) \in k[x]$ be relatively prime and *monic*. Show that if h(x) is *monic* and *irreducible* in k[x] and $h^2|fg$ then $h^2|f$ or $h^2|g$.

W 7.2: 39 Let $f(x), g(x) \in k[x]$ be *nonconstant* monic polynomials, where k is a field. Show that, if g is irreducible and every root of f (in an appropriate splitting field) is also a root of g, then $f = g^m$ for some integer $m \ge 1$. Hint: Use *strong* induction on deg(f) (not deg(h).)

D 8.2: 8 This problem references Example 8.12, which has a typo. The second step of the Euclidean algorithm should be:

$$z = (3-i)(-10+15i) + (-4-7i)$$

The text has (3+3i) instead of z, but this is a mistake.

W 8.4: 47 Referring to Example 8.52, (i) the ideal generated by the norms of generators of J_1 is an ideal in \mathbb{Z} , and hence principal. Find a generator for it. (ii) Do the same for the other ideals J_2 , J_3 , and J_4 .