Amy DeCelles

Introduction

Winding Up

Eigenfunction Expansion

Integral Transforn

Conclusion

The Automorphic Heat Kernel & Ladders of Zeta Functions

Amy DeCelles

Bethel University, Indiana

JMM, Boston, Jan 5, 2023

Amy DeCelles

Introduction

Riemann Zeta Function

Selberg Zeta (McKean, 1972 Jorgenson-Lang Program

Winding Up

Eigenfunctio Expansion

Integral Transform

Conclusion

1D Euclidean Heat Kernel

Heat kernel $\mathfrak{u}:\mathbb{R} imes(0,\infty)\to\mathbb{R}$ satisfies:

$$(\partial_t - \Delta) u = 0, \qquad \lim_{t \to 0^+} u(x, t) = \delta.$$

Apply Fourier transform \mathcal{F} :

$$(\vartheta_t + 4\pi^2\xi^2) \mathfrak{Fu} = 0, \qquad \lim_{t \to 0^+} (\mathfrak{Fu})(\xi, t) = \mathfrak{F\delta} = 1.$$

Considering ξ as fixed, $\mathfrak{Fu}(\xi, t)$ satisfies familiar IVP:

$$\frac{\mathrm{d} y}{\mathrm{d} t} \;=\; -4\pi^2\xi^2\,y, \quad y(0)=1 \quad \Rightarrow \quad y(t)=e^{-4\pi^2\xi^2t}$$

Fourier inversion: $u(x, t) = (4\pi t)^{-1/2} e^{-x^2/4t}$.

Amy DeCelles

Introduction

Riemann Zeta Function

Selberg Zeta (McKean, 1972 Jorgenson-Lang Program

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Theta Inversion and Riemann Zeta

Construct heat kernel $h_t^{\mathbb{R}/\mathbb{Z}}(x)$ on \mathbb{R}/\mathbb{Z} by periodicization and by Fourier series:

$$\sum_{n \in \mathbb{Z}} \frac{e^{-(x+n)^2/4t}}{2\sqrt{\pi t}} = \sum_{\xi \in \mathbb{Z}} e^{-4\pi^2 \xi^2 t} e^{2\pi i x \xi}.$$

Theta Inversion (x = 0 and $z = 4\pi it$):

$$\theta(z) = rac{1}{\sqrt{-iz}} \; hetaigg(rac{1}{z}igg) \; .$$

Apply Mellin transform to:

$$\frac{\theta(\mathrm{i} \mathrm{y})-1}{2} = \sum_{n=1}^{\infty} e^{-\pi n^2 \mathrm{y}} .$$

Mero. continuation and functional equation for Riemann zeta.

Amy DeCelles

Introduction

Riemann Zeta Function

Selberg Zeta (McKean, 1972) Jorgenson-Lang

Program

Winding Up

Eigenfunctio Expansion

Integral Transform

Conclusion

Selberg Zeta (McKean, 1972)

Compact Riemannian surface $M = \Gamma \backslash \mathfrak{H}$ (genus > 1).

Two-variable heat kernel on \mathfrak{H} :

$$K_t(x,y) \ = \ \frac{e^{-t/4}\,\sqrt{2}}{(4\pi t)^{3/2}}\,\int_a^\infty \frac{b\,e^{-b^2/4t}}{\sqrt{\cosh b - \cosh a}}\,db\;,$$

where a = d(x, y) is the distance between x and y in \mathfrak{H} .

Heat kernel on M:

$$\label{eq:constraint} \begin{split} \mathsf{K}^{\mathsf{M}}_t(x,y) \ = \ \sum_{\gamma \in \Gamma} \mathsf{K}_t(x,\gamma y) \ . \end{split}$$

Amy DeCelles

Introduction

Riemann Zeta Function

Selberg Zeta (McKean, 1972)

Jorgenson-Lang Program

Winding Up

Eigenfunctio Expansion

Integral Transform

Conclusion

Selberg Trace Formula

٠

Expand trace of K_t^M in two different ways:

$$\begin{split} &\sum_{n=0}^{\infty} e^{\lambda_n t} = \operatorname{area}(M) \frac{e^{-t/4}}{(4\pi t)^{3/2}} \int_0^{\infty} \frac{b e^{-b^2/4t}}{\sinh \frac{1}{2} b} \, db \\ &+ \frac{1}{2} \sum_{m=1}^{\infty} \sum_{\{p\}} \frac{\ell(p)}{\sinh \frac{1}{2} \ell(p^n)} \, \frac{e^{-t/4}}{(4\pi t)^{1/2}} \, e^{-|\ell(p^n)|^2/4t} \end{split}$$

RHS: "trivial term" $+ \vartheta(t)$.

Amy DeCelles

Introduction

Riemann Zeta Function

Selberg Zeta (McKean, 1972)

Jorgenson-Lang Program

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Selberg Zeta

Integral Transform:

$$f \; \mapsto \; (2s-1) \int_0^\infty f(t) \, e^{-s(s-1)t} \, dt \; .$$

Apply to theta function, spectral side, and trivial term:

$$\frac{Z'(s)}{Z(s)} = \sum_{n=0}^{\infty} \left(\frac{1}{s-s_n} + \frac{1}{s-(1-s_n)} \right) - 2(g-1) \sum_{k=0}^{\infty} \frac{2s-1}{s+k}.$$

Mero. continuation and functional equation for Selberg zeta.

Amy DeCelles

Introductio

Riemann Zeta Function Selberg Zeta (McKean, 1972

Jorgenson-Lang Program

Winding Up

Eigenfunctio Expansion

Integral Transform

Conclusion

Jorgenson-Lang Vision

To create new zeta functions:

- 1 Start with the heat kernel on a symmetric space G/K.
- 2 Periodicize it with respect to a discrete subgroup Γ.
- **3** Determine the eigenfunction expansion on $\Gamma \setminus G/K$.
- **4** Regularize the expansion and integrate over $\Gamma \setminus G$.
- **6** Apply Gauss transform: $f \mapsto 2s \int_0^\infty f(t) e^{-s^2 t} dt$.

Amy DeCelles

Introductio

Riemann Zeta Function Selberg Zeta (McKean, 1972)

Jorgenson-Lang Program

Winding Up

Eigenfunctio Expansion

Integral Transform

Conclusion

Jorgenson-Lang Vision

To create new zeta functions:

- 1) Start with the heat kernel on a symmetric space G/K.
- **2** Periodicize it with respect to a discrete subgroup Γ .
- **3** Determine the eigenfunction expansion on $\Gamma \setminus G/K$.
- 4 Regularize the expansion and integrate over $\Gamma \setminus G$.
- **6** Apply Gauss transform: $f \mapsto 2s \int_0^\infty f(t) e^{-s^2 t} dt$.

Effect? On geometric side: Apply to heat kernel

- on \mathbb{R} : exponential; wind up: Dirichlet series.
- on \mathbb{R}^n : K-Bessel function (elem. if n odd)
- on G/K, G cx: poly. times K-Bessel

On spectral side:

- Apply to terms of the form $a_{\xi}e^{-\lambda_{\xi}t}$ with $\lambda_{\xi} = \xi^2$.
- Rational functions with simple poles at $\pm i\xi.$
- Sum is log derivative of function with zeros at $\pm i\xi$ of mult. $a_\xi?$

Amy DeCelles

Introduction

Riemann Zeta Function Selberg Zeta (McKean, 1972)

Jorgenson-Lang Program

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Jorgenson-Lang Vision

To create new zeta functions:

- 1 Start with the heat kernel on a symmetric space G/K.
- 2 Periodicize it with respect to a discrete subgroup Γ.
- **3** Determine the eigenfunction expansion on $\Gamma \setminus G/K$.
- **4** Regularize the expansion and integrate over $\Gamma \setminus G$.
- **5** Apply integral transform ("Gauss" transform).

Jorgenson and Lang

- Compact quotient of \mathbb{H}^3 (1994, 1996)
 - Shintani and Millson (Millson, 1978)
- Eventually main theme of joint research (1993-2012).

Amy DeCelles

Introduction

Riemann Zeta Function Selberg Zeta (McKean, 1972

Jorgenson-Lang Program

Winding Up

Eigenfunctio Expansion

Integral Transform

Conclusion

Jorgenson-Lang Vision

To create new zeta functions:

- **1** Start with the heat kernel on a symmetric space G/K.
- 2 Periodicize it with respect to a discrete subgroup Γ .
- **3** Determine the eigenfunction expansion on $\Gamma \setminus G/K$.
- **4** Regularize the expansion and integrate over $\Gamma \setminus G$.
- **5** Apply integral transform ("Gauss" transform).

Such zeta functions:

- Of interest in themselves.
- Perhaps shed light on other zeta functions of interest.
 - Consider ladders of symmetric spaces.
 - Ex: natural embedding $SL_n(\mathbb{C})/SU(n) \hookrightarrow SL_{n+1}(\mathbb{C})/SU(n+1).$
 - Corresponding ladders of zeta functions.

Challenges

Amy DeCelles

Heat Kernels and Zetas

Riemann Zeta Function Selberg Zeta (McKean, 1972

Jorgenson-Lang Program

Winding Up

Eigenfunctior Expansion

Integral Transform

Conclusion

- Heat kernel on G/K is not elementary; asymptotics nontrivial.
 - Wind up? (Convergence?)
- 2 Eigenfunction expansion on $\Gamma \setminus G/K$? (Convergence?)
- **3** Regularization? Trace? Alternatives?
 - Pre-trace formula?
 - Evaluation?
- 4 Integral transform (Convergence? Modifications?)
 - What do we get?

Challenge 1

Wind-up heat kernel on G/K?

- Gangolli 1968: Bi-K-invariant heat kernel on G, conn. ss. Lie, finite center.
 - Integral representation:

$$h_{\mathbf{t}}(\mathfrak{a}) = \int_{W \setminus \mathfrak{a}^{*}} e^{-\mathbf{t}(|\lambda|^{2} + |\rho|^{2})} \varphi_{\lambda}(\mathfrak{a}) \, |\mathbf{c}(\lambda)|^{-2} \, d\lambda \, .$$

- Explicit formula when G/K of complex type: $h_t(\boldsymbol{a})$ is constant multiple of:

$$(4\pi t)^{-n/2} \ e^{-t|\rho|^2} \ \prod_{\alpha \in \Sigma^+} \frac{\alpha(\log a)}{2\sinh \alpha(\log a)} \ e^{-|\log a|^2/4t}$$

- Wind-up over cocompact $\Gamma:$ heat kernel on $\Gamma \backslash G/K.$
- Fay 1977: noncompact quotient of $G/K=\mathbb{H}^d$
- Convergence of $\sum_{\gamma \in \Gamma} h_t(\gamma g)$ in general?

Heat Kernels and Zetas

Amy DeCelles

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Amy DeCelles

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

G, countably based, locally compact, Hausdorf, unimodular topological group G with compact subgroup K

Norm on G, a continuous function $\|{\cdot}\|:G\to (0,\infty)$ with:

- $\|\operatorname{id}_G\|=1,$ where id_G is the identity element in G,
- $\|g\| \ge 1$, for all g in G,
- $\|g\| = \|g^{-1}\|$, for all g in G,
- submultiplicativity: $\|gh\|\ \leqslant\ \|g\|\cdot\|h\|,$ for all g,h in G,
- K-invariance: ||kgk'|| = ||g||, all g in G, k, k' in K,
- integrability: for some $r_0 \ge 0$,

$$\int_G \|g\|^{-r}\,dg\ <\ \infty \quad (r>r_0).$$

Norms on groups

Amy DeCelles

Introduction

Winding Up

Eigenfunctior Expansion

Integral Transform

Conclusion

Garrett's Thm. on Poincaré Series

- G as in previous, Γ discrete subgroup
- Norm $\|\cdot\|$ on G with integrability exponent r_0 .
- For suitable $f: G \to \mathbb{C}$, have Poincaré series:

$$\mathsf{P}\acute{e}_{\mathsf{f}}(\mathsf{g}) = \sum_{\gamma \in \Gamma} \mathsf{f}(\gamma \mathsf{g})$$

Theorem (Garrett; see 2010 paper with Diaconu)

- If |f(g)| ≪ ||g||^{-r} for some r > r₀, then the associated Poincaré series converges absolutely and uniformly on compact sets to a function of moderate growth.
- If $|f(g)| \ll ||g||^{-2r}$ for some $r > r_0$, then $P\acute{e_f}$ is square integrable modulo Γ .

Amy DeCelles

Introduction

Winding Up

Eigenfunctior Expansion

Integral Transform

Conclusion

Poincaré series for heat kernel

Theorem (D.)

For
$$t>0,$$
 the Poincaré series $\sum_{\gamma\in\Gamma}h_t(\gamma g)$

- converges absolutely and uniformly on compacts,
- is of moderate growth, and
- *is square integrable mod* Γ.

Outline of Proof.

First show:

- $\|g\| = \|kak'\| = e^{|\log a|}$ is a norm on G,
- with integrability expt: $r_0 = \sum_{\alpha \in \Sigma^+} m_\alpha \, |\alpha|.$

Debiard, Gaveau, and Mazet bound:

$$h_t(a) \ll (4\pi t)^{-\dim(G/K)/2} \cdot e^{-|\log a|^2/4t}$$

 $\textit{ensures } h_t(a) \ \ll \ e^{-2r|\log a|}, \ \textit{ some } r > r_0.$

Challenge 2

Introduction

Heat Kernels and Zetas

Amy DeCelles

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Given heat ker. on $\Gamma \backslash G/K,$ find automorphic spectral exp'n?

Heuristically obvious, but hard if starting from $\sum h_t(\gamma g)$.

More structural approach (D. 2021)

- Characterize automorphic heat kernel (via afc PDE).
- Construct solution to automorphic PDE.
 - Use global automorphic Sobolev theory.
 - Construct automorphic heat kernel via automorphic spectral expansion in terms of cusp forms, Eisenstein series, and residues of Eisenstein series.

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Spectral Theory for $SL_2(\mathbb{Z}) \backslash \mathfrak{H}$

Consider $X = SL_2(\mathbb{Z}) \setminus \mathfrak{H}$, with Laplacian $\Delta = y^2(\frac{d^2}{dx^2} + \frac{d^2}{dy^2})$.

Spectral inversion: eigenfunction expansion

$$F \stackrel{L^2}{=} \sum_{F} \langle f, F \rangle \cdot F + \langle f, \Phi_0 \rangle \cdot \Phi_0 + \frac{1}{4\pi i} \int_{\frac{1}{2} + i\mathbb{R}} \langle f, E_s \rangle \cdot E_s \, ds$$

where

f

- F in o.n.b. of cusp forms,
- Φ_0 is the constant automorphic form with unit L²-norm,
- and E_s is the real analytic Eisenstein series.

Note: integrals are extensions by isometric isomorphisms of continuous linear functionals on $C_c^{\infty}(X)$.

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Automorphic Spectral Theory

Abbreviate (and generalize): denote elements of the spectral "basis" (cusp forms, Eisenstein series, residues of Eisenstein series) uniformly as $\{\Phi_{\xi}\}_{\xi\in\Xi}$.

$$f = \int_{\Xi} \langle f, \Phi_{\xi} \rangle \cdot \Phi_{\xi} \ d\xi$$

View Ξ as a finite disjoint union of spaces of the form $\mathbb{Z}^n\times\mathbb{R}^m$ with usual measures.

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Automorphic Sobolev Spaces

nner product
$$\langle$$
 , $angle_s$ (for 0 $\leqslant s \in \mathbb{Z}$) on $C^\infty_c(X)$ by

$$\langle \phi, \psi \rangle_s = \langle (1-\Delta)^s \phi, \psi \rangle_{L^2}$$

Sobolev spaces:

- + H^s is Hilbert space completion of $C^\infty_c(X)$ w.r.t. topology induced by $\langle\,,\,\rangle_s$
- H^{-s} is Hilbert space dual of H^s .

Note:

h

- $H^0 = L^2(X)$
- Nesting: $H^s \hookrightarrow H^{s-1}$ for all s.

Amy DeCelles

Introduction

Winding U

Eigenfunction Expansion

Integral Transform

Conclusion

Automorphic Heat Kernel

Let ℓ be the smallest integer strictly greater than $\dim X/2.$

We define an automorphic heat kernel to be a map $U:(0,\infty)\to H^{-\ell}(X)$ such that

1 U satisfies the "initial condition,"

$$\lim_{t\to 0^+} \ U(t) \ = \ \delta \quad \text{ in } \ H^{-\ell}(X).$$

② For some s ≤ -l - 2, U is strongly differentiable as an H^s -valued function and satisfies the "heat equation", i.e. for t > 0,

$$U'(t) - \Delta U(t) = 0 \quad \text{in } H^s(X)$$

Amy DeCelles

Introduction

Winding Up

Eigenfunction Expansion

F

Integral Transform

Conclusior

Results from D. 2021

For
$$t \ge 0$$
, let $U(t) = \int_{\Xi} \overline{\Phi}_{\xi}(x_0) \cdot e^{\lambda_{\xi} t} \cdot \Phi_{\xi} d\xi$.
1 For $t \ge 0$, $U(t) \in H^{-\ell}$.

$$2 \lim_{t \to 0^+} U(t) = \delta \text{ in the topology of } H^{-\ell}.$$

- ${f 3}$ U(t) is the **unique** automorphic heat kernel.
- 4 It is strongly C^1 as a $H^{-\ell-2}$ -valued function on $[0, \infty)$.
- **6** For t > 0, U(t) lies in $C^{\infty}(X)$, and its automorphic spectral expansion converges in the $C^{\infty}(X)$ -topology.

Key is to prove analogous results for $\widetilde{U}(t) = \overline{\Phi}_{\xi}(x_0) \cdot e^{\lambda_{\xi} t}$, which is in a weighted L²-space on Ξ .

Amy DeCelles

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Example: $SL_2(\mathbb{Z}) \setminus \mathfrak{H}$

The unique automorphic heat kernel on $X = SL_2(\mathbb{Z}) \setminus \mathfrak{H}$ is:

$$\begin{aligned} \mathsf{U}(\mathsf{t}) &= \sum_{\mathsf{F}} \,\overline{\mathsf{F}}(\mathsf{x}_0) \, e^{\mathsf{\lambda}_{\mathsf{F}} \mathsf{t}} \cdot \mathsf{F} \, + \, \overline{\Phi}_0(\mathsf{x}_0) \cdot \Phi_0 \\ &+ \frac{1}{4\pi \mathfrak{i}} \! \int_{\frac{1}{2} + \mathfrak{i}\mathbb{R}} \overline{\mathsf{E}}_s(\mathsf{x}_0) \, e^{s(s-1)\mathsf{t}} \cdot \mathsf{E}_s \, ds \end{aligned}$$

For t > 0, U(t) is a smooth function on $SL_2(\mathbb{Z}) \setminus \mathfrak{H}$, and its spectral expansion converges to it in the C^{∞}-topology.

Introduction

Winding Up

Eigenfunctior Expansion

Integral Transform

Conclusion

Jorgenson and Lang proposed a "Gauss" transform:

$$f \mapsto 2s \int_0^\infty f(t) e^{-s^2 t} dt$$

Also suggested renormalizations and other modifications, e.g.:

$$f \hspace{0.2cm} \mapsto \hspace{0.2cm} 2s \int_{0}^{\infty} f(t) \hspace{0.1cm} t^{N} \hspace{0.1cm} e^{-s^{2} t} \hspace{0.1cm} dt \hspace{0.1cm} ,$$

for convergence of transform of "trivial" term.

How to choose appropriate transform? What is the effect of applying a Gauss transform, in general? Can we characterize the result?

Again, will shift from formulaic to more structural viewpoint.

Challenge 4

Introduction

Winding Up

Eigenfunctior Expansion

Integral Transform

Conclusion

Operator and Vector-Valued Transforms

Gauss transform is Laplace transform with change of variables.

• Can apply the robust theory of operator and vector-valued Laplace transform (Arendt, Batty, Hieber, Neubrander).

Given an automorphic heat kernel $U:(0,\infty)\to H^{-\ell-2},$ its Laplace transform,

$$\mathcal{L} U(\lambda) \ = \ \int_0^\infty e^{-\lambda t} \cdot U(t) \ dt$$

exists as an $H^{-\ell-2}\text{-valued}$ function of $\lambda,$ holomorphic for λ in a right half plane, and it satisfies

$$(\lambda - \Delta) \mathcal{L} U(\lambda) \;\; = \;\; \delta$$
 ,

i.e. $\nu_{\lambda} = \mathcal{L} U(\lambda)$ is a fundamental solution for $(\lambda - \Delta).$

Amy DeCelles

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Afc Fundamental Solution

From prior work (D. 2012), we know

• ν_λ has an automorphic spectral expansion

$$\nu_{\lambda} \ = \ \int_{\Xi} \frac{\overline{\Phi_{\xi}(x_0)}}{\lambda - \lambda_{\xi}} \ \Phi_{\xi} \ d\xi \quad (\text{in } H^{-\ell+2}),$$

• v_{λ} is *not* in H^s for any $s \ge -\frac{1}{2}(\dim X)$

- only if dim X=1 does Sobolev embedding imply ν_λ continuous

Amy DeCelles

Introduction

Winding Up

Eigenfunctior Expansion

Integral Transform

Conclusion

Smoothed Fundamental Solution

However, if we modify the afc PDE:

$$(\lambda-\Delta)^p\,\nu_{p,\lambda}~=~\delta$$
 ,

the solution $v_{p,\lambda}$ has spectral expansion

$$\nu_{\lambda} \ = \ \int_{\Xi} \frac{\overline{\Phi_{\xi}(x_0)}}{(\lambda-\lambda_{\xi})^p} \ \Phi_{\xi} \ d\xi \quad (\text{in } H^{-\ell+2p}),$$

so for p sufficiently large $\nu_{p,\lambda}$ is continuous (even $C^k).$

Amy DeCelles

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Connection to Modified Transform

Moreover, we have shown

$$rac{d^N}{d\lambda^N}\,
u_\lambda \ = \
u_{N+1,\lambda}$$
 ,

and (ABHN, Theorem 1.5.1 \Rightarrow),

$$rac{d^N}{d\lambda^N}\,
u_\lambda \ = \ -\mathcal{L}^N U(\lambda)$$
 ,

where \mathcal{L}^N is the modified Laplace transform:

$$\mathcal{L}^N:\;f\;\;\to\;\;\int_0^\infty e^{-\lambda t}(-t)^N\cdot f(t)\;dt\;.$$

Therefore,

$$\mathcal{L}^N \boldsymbol{U}(\boldsymbol{\lambda}) = - \boldsymbol{\nu}_{N+1,\boldsymbol{\lambda}}$$
 ,

which is continuous (even C^k) for N sufficiently large.

Amy DeCelles

Introduction

Winding Up

Eigenfunctior Expansion

Integral Transform

Conclusion

Antidifferentiation Trick?

If $\mathcal{L}(f)$ does not converge,

- Consider $\mathcal{L}^{N}(f)$ and antidifferentiate with respect to $\lambda.$
 - Attempt to recover $\mathcal{L}(f)$.
- For example, with "trivial" term in some spectral expansion.

Caution:

- We know that ν_λ is not in H^s for any $s \geqslant -\dim(X)/2.$
- Not reasonable to expect ν_λ to have meaningful pointwise values when dim(G/K)>1.

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Mero. Cont'n & Branching

Moreover, (D. 2015; see also Garrett 2018, 12.5),

- Automorphic fundamental solution may exhibit *branching*:
 - Meromorphic continuations along different paths in the complex plane may differ by a term of moderate growth.
 - In particular, the resulting function may lie outside of global automorphic Sobolev spaces.'
- For example:
 - Hilbert-Maass fundamental solutions,
 - GL₃ fundamental solution.
- In general when there is "mixed" discrete/continuous spectrum.

Apparent symmetry which suggests functional equation may be only superficial.

Amy DeCelles

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Conclusion: Resolved

- Convergence of geometric description of afc heat kernel and square integrability modulo $\Gamma.$
 - Norms on groups, Garrett's theorem, DGM bound.
- Eigenfunction expansion
 - Existence, uniqueness of afc heat kernel as $H^{-\ell}$ -valued function of t; in $C^1([0,\infty), H^{-\ell})$; smoothness for t > 0.
- Nature of Laplace transform of afc heat kernel (whole).

Amy DeCelles

Introduction

Winding Up

Eigenfunction Expansion

Integral Transform

Conclusion

Conclusion: To Investigate

- Spectral Identity:
 - Does the geometric construction yield a function in $C^1([0,\infty),H^{-\ell})?$
 - Nature of equality of geometric and spectral sides?
- What distribution to apply?
 - Trace? (Automorphic truncation needed?)
 - Evaluation?
- Break up spectral expansion to isolate term of interest?
 - Serendipitous cancellation? (Jo-Lang 2009)
 - Projection to subspace spanned by discrete spectrum.

Heat	Kernels
and	Zetas
Amy I	DeCelles

Introduction

Winding Up

Eigenfunctior Expansion

Integral Transform

Conclusion

Thank you for your attention!