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1D Euclidean Heat Kernel

Heat kernel u : R× (0,∞)→ R satisfies:

(∂t − ∆)u = 0, lim
t→0+

u(x, t) = δ.

Apply Fourier transform F:

(∂t + 4π2ξ2)Fu = 0, lim
t→0+

(Fu)(ξ, t) = Fδ = 1.

Considering ξ as fixed, Fu(ξ, t) satisfies familiar IVP:

dy
dt = −4π2ξ2 y, y(0) = 1 ⇒ y(t) = e−4π2ξ2t

Fourier inversion: u(x, t) = (4πt)−1/2 e−x
2/4t .
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Theta Inversion and Riemann Zeta

Construct heat kernel h
R/Z
t (x) on R/Z by periodicization and

by Fourier series:

∑
n∈Z

e−(x+n)2/4t

2
√
πt

=
∑
ξ∈Z

e−4π2ξ2t e2πixξ .

Theta Inversion (x = 0 and z = 4πit):

θ(z) =
1√
−iz

θ

(
1

z

)
.

Apply Mellin transform to:

θ(iy) − 1

2
=

∞∑
n=1

e−πn
2y .

Mero. continuation and functional equation for Riemann zeta.
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Selberg Zeta (McKean, 1972)

Compact Riemannian surface M = Γ\H (genus > 1).

Two-variable heat kernel on H:

Kt(x,y) =
e−t/4

√
2

(4πt)3/2

∫∞
a

b e−b
2/4t

√
coshb− cosha

db ,

where a = d(x,y) is the distance between x and y in H.

Heat kernel on M:

KMt (x,y) =
∑
γ∈Γ

Kt(x,γy) .
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Selberg Trace Formula

Expand trace of KMt in two different ways:

∞∑
n=0

eλnt = area(M)
e−t/4

(4πt)3/2

∫∞
0

be−b
2/4t

sinh 1
2b

db

+
1

2

∞∑
m=1

∑
{p}

`(p)

sinh 1
2`(p

n)

e−t/4

(4πt)1/2
e−|`(pn)|2/4t .

RHS: “trivial term” + ϑ(t).
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Selberg Zeta

Integral Transform:

f 7→ (2s− 1)

∫∞
0
f(t) e−s(s−1)t dt .

Apply to theta function, spectral side, and trivial term:

Z ′(s)

Z(s)
=

∞∑
n=0

(
1

s− sn
+

1

s− (1 − sn)

)

− 2(g− 1)
∞∑
k=0

2s− 1

s+ k
.

Mero. continuation and functional equation for Selberg zeta.
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Jorgenson-Lang Vision

To create new zeta functions:

1 Start with the heat kernel on a symmetric space G/K.

2 Periodicize it with respect to a discrete subgroup Γ .

3 Determine the eigenfunction expansion on Γ\G/K.

4 Regularize the expansion and integrate over Γ\G.

5 Apply Gauss transform: f 7→ 2s
∫∞
0 f(t) e

−s2t dt.

Effect? On geometric side: Apply to heat kernel
• on R: exponential; wind up: Dirichlet series.
• on Rn: K-Bessel function (elem. if n odd)
• on G/K, G cx: poly. times K-Bessel

On spectral side:
• Apply to terms of the form aξe

−λξt with λξ = ξ2.
• Rational functions with simple poles at ±iξ.
• Sum is log derivative of function with zeros at ±iξ of

mult. aξ?
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Jorgenson-Lang Vision

To create new zeta functions:

1 Start with the heat kernel on a symmetric space G/K.

2 Periodicize it with respect to a discrete subgroup Γ .

3 Determine the eigenfunction expansion on Γ\G/K.

4 Regularize the expansion and integrate over Γ\G.

5 Apply integral transform (“Gauss” transform).

Jorgenson and Lang

• Compact quotient of H3 (1994, 1996)
• Shintani and Millson (Millson, 1978)

• Eventually main theme of joint research (1993-2012).
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Jorgenson-Lang Vision

To create new zeta functions:

1 Start with the heat kernel on a symmetric space G/K.

2 Periodicize it with respect to a discrete subgroup Γ .

3 Determine the eigenfunction expansion on Γ\G/K.

4 Regularize the expansion and integrate over Γ\G.

5 Apply integral transform (“Gauss” transform).

Such zeta functions:

• Of interest in themselves.

• Perhaps shed light on other zeta functions of interest.
• Consider ladders of symmetric spaces.
• Ex: natural embedding
SLn(C)/SU(n) ↪→ SLn+1(C)/SU(n+ 1).

• Corresponding ladders of zeta functions.
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Challenges

1 Heat kernel on G/K is not elementary; asymptotics
nontrivial.

• Wind up? (Convergence?)

2 Eigenfunction expansion on Γ\G/K? (Convergence?)

3 Regularization? Trace? Alternatives?
• Pre-trace formula?
• Evaluation?

4 Integral transform (Convergence? Modifications?)
• What do we get?



Heat Kernels
and Zetas

Amy DeCelles

Introduction

Winding Up

Eigenfunction
Expansion

Integral
Transform

Conclusion

Challenge 1
Wind-up heat kernel on G/K?

• Gangolli 1968: Bi-K-invariant heat kernel on G, conn. ss.
Lie, finite center.

• Integral representation:

ht(a) =

∫
W\a∗

e−t(|λ|
2+|ρ|2)ϕλ(a) |c(λ)|

−2 dλ .

• Explicit formula when G/K of complex type: ht(a) is
constant multiple of:

(4πt)−n/2 e−t|ρ|
2

∏
α∈Σ+

α(loga)

2 sinhα(loga)
e−| loga|2/4t .

• Wind-up over cocompact Γ : heat kernel on Γ\G/K.

• Fay 1977: noncompact quotient of G/K = Hd

• Convergence of
∑
γ∈Γ

ht(γg) in general?
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Norms on groups

G, countably based, locally compact, Hausdorf, unimodular
topological group G with compact subgroup K

Norm on G, a continuous function ‖·‖ : G→ (0,∞) with:

• ‖ idG‖ = 1, where idG is the identity element in G,

• ‖g‖ > 1, for all g in G,

• ‖g‖ = ‖g−1‖, for all g in G,

• submultiplicativity: ‖gh‖ 6 ‖g‖ · ‖h‖, for all g,h in G,

• K-invariance: ‖kgk ′‖ = ‖g‖, all g in G, k, k ′ in K,

• integrability: for some r0 > 0,∫
G

‖g‖−r dg < ∞ (r > r0).
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Garrett’s Thm. on Poincaré Series

• G as in previous, Γ discrete subgroup

• Norm ‖·‖ on G with integrability exponent r0.

• For suitable f : G→ C, have Poincaré series:

Péf(g) =
∑
γ∈Γ

f(γg)

Theorem (Garrett; see 2010 paper with Diaconu)

• If |f(g)|� ‖g‖−r for some r > r0, then the associated
Poincaré series converges absolutely and uniformly on
compact sets to a function of moderate growth.

• If |f(g)|� ‖g‖−2r for some r > r0, then Péf is square
integrable modulo Γ .
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Poincaré series for heat kernel

Theorem (D.)

For t > 0, the Poincaré series
∑
γ∈Γ

ht(γg)

• converges absolutely and uniformly on compacts,

• is of moderate growth, and

• is square integrable mod Γ .

Outline of Proof.
First show:

• ‖g‖ = ‖kak ′‖ = e| loga| is a norm on G,

• with integrability expt: r0 =
∑
α∈Σ+ mα |α|.

Debiard, Gaveau, and Mazet bound:

ht(a) � (4πt)− dim(G/K)/2 · e−| loga|2/4t ,

ensures ht(a) � e−2r| loga|, some r > r0.
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Challenge 2

Given heat ker. on Γ\G/K, find automorphic spectral exp’n?

Heuristically obvious, but hard if starting from
∑
ht(γg).

More structural approach (D. 2021)

• Characterize automorphic heat kernel (via afc PDE).

• Construct solution to automorphic PDE.
• Use global automorphic Sobolev theory.
• Construct automorphic heat kernel via automorphic

spectral expansion in terms of cusp forms, Eisenstein
series, and residues of Eisenstein series.
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Spectral Theory for SL2(Z)\H

Consider X = SL2(Z)\H, with Laplacian ∆ = y2( d
2

dx2
+ d2

dy2 ).

Spectral inversion: eigenfunction expansion

f
L2
=

∑
F

〈f, F〉 · F + 〈f,Φ0〉 ·Φ0 +
1

4πi

∫
1
2+iR
〈f,Es〉 · Es ds

where

• F in o.n.b. of cusp forms,

• Φ0 is the constant automorphic form with unit L2-norm,

• and Es is the real analytic Eisenstein series.

Note: integrals are extensions by isometric isomorphisms of
continuous linear functionals on C∞

c (X).
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Automorphic Spectral Theory

Abbreviate (and generalize): denote elements of the spectral
“basis” (cusp forms, Eisenstein series, residues of Eisenstein
series) uniformly as {Φξ}ξ∈Ξ.

f =

∫
Ξ

〈f,Φξ〉 ·Φξ dξ

View Ξ as a finite disjoint union of spaces of the form
Zn × Rm with usual measures.
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Automorphic Sobolev Spaces

Inner product 〈 , 〉s (for 0 6 s ∈ Z) on C∞
c (X) by

〈ϕ,ψ〉s = 〈(1 − ∆)sϕ,ψ〉L2

Sobolev spaces:

• Hs is Hilbert space completion of C∞
c (X) w.r.t. topology

induced by 〈 , 〉s
• H−s is Hilbert space dual of Hs.

Note:

• H0 = L2(X)

• Nesting: Hs ↪→ Hs−1 for all s.
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Automorphic Heat Kernel

Let ` be the smallest integer strictly greater than dimX/2.

We define an automorphic heat kernel to be a map
U : (0,∞)→ H−`(X) such that

1 U satisfies the “initial condition,”

lim
t→0+

U(t) = δ in H−`(X).

2 For some s 6 −`− 2, U is strongly differentiable as an
Hs-valued function and satisfies the “heat equation”, i.e.
for t > 0,

U ′(t) − ∆U(t) = 0 in Hs(X)
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Results from D. 2021

For t > 0, let U(t) =
∫
ΞΦξ(x0) · e

λξ t ·Φξ dξ .

1 For t > 0, U(t) ∈ H−`.

2 lim
t→0+

U(t) = δ in the topology of H−`.

3 U(t) is the unique automorphic heat kernel.

4 It is strongly C1 as a H−`−2-valued function on [0,∞).

5 For t > 0, U(t) lies in C∞(X), and its automorphic
spectral expansion converges in the C∞(X)-topology.

Key is to prove analogous results for Ũ(t) = Φξ(x0) · eλξ t,
which is in a weighted L2-space on Ξ.
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Example: SL2(Z)\H

The unique automorphic heat kernel on X = SL2(Z)\H is:

U(t) =
∑
F

F(x0) e
λFt · F + Φ0(x0) ·Φ0

+
1

4πi

∫
1
2+iR

Es(x0) e
s(s−1)t · Es ds

For t > 0, U(t) is a smooth function on SL2(Z)\H, and its
spectral expansion converges to it in the C∞-topology.
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Challenge 4

Jorgenson and Lang proposed a “Gauss” transform:

f 7→ 2s

∫∞
0
f(t) e−s

2t dt .

Also suggested renormalizations and other modifications, e.g.:

f 7→ 2s

∫∞
0
f(t) tNe−s

2t dt ,

for convergence of transform of “trivial” term.

How to choose appropriate transform? What is the effect of
applying a Gauss transform, in general? Can we characterize
the result?

Again, will shift from formulaic to more structural viewpoint.
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Operator and Vector-Valued
Transforms

Gauss transform is Laplace transform with change of variables.

• Can apply the robust theory of operator and vector-valued
Laplace transform (Arendt, Batty, Hieber, Neubrander).

Given an automorphic heat kernel U : (0,∞)→ H−`−2, its
Laplace transform,

LU(λ) =

∫∞
0
e−λt ·U(t)dt

exists as an H−`−2-valued function of λ, holomorphic for λ in a
right half plane, and it satisfies

(λ− ∆)LU(λ) = δ ,

i.e. vλ = LU(λ) is a fundamental solution for (λ− ∆).
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Afc Fundamental Solution

From prior work (D. 2012), we know

• vλ has an automorphic spectral expansion

vλ =

∫
Ξ

Φξ(x0)

λ− λξ
Φξ dξ (in H−`+2),

• vλ is not in Hs for any s > −1
2(dimX)

• only if dimX = 1 does Sobolev embedding imply vλ
continuous
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Smoothed Fundamental Solution

However, if we modify the afc PDE:

(λ− ∆)p vp,λ = δ ,

the solution vp,λ has spectral expansion

vλ =

∫
Ξ

Φξ(x0)

(λ− λξ)p
Φξ dξ (in H−`+2p),

so for p sufficiently large vp,λ is continuous (even Ck).
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Connection to Modified Transform

Moreover, we have shown

dN

dλN
vλ = vN+1,λ ,

and (ABHN, Theorem 1.5.1 ⇒),

dN

dλN
vλ = −LNU(λ) ,

where LN is the modified Laplace transform:

LN : f →
∫∞
0
e−λt(−t)N · f(t)dt .

Therefore,
LNU(λ) = −vN+1,λ ,

which is continuous (even Ck) for N sufficiently large.
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Antidifferentiation Trick?

If L(f) does not converge,

• Consider LN(f) and antidifferentiate with respect to λ.
• Attempt to recover L(f).

• For example, with “trivial” term in some spectral
expansion.

Caution:

• We know that vλ is not in Hs for any s > − dim(X)/2.

• Not reasonable to expect vλ to have meaningful pointwise
values when dim(G/K) > 1.
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Mero. Cont’n & Branching

Moreover, (D. 2015; see also Garrett 2018, 12.5),

• Automorphic fundamental solution may exhibit branching:
• Meromorphic continuations along different paths in the

complex plane may differ by a term of moderate growth.
• In particular, the resulting function may lie outside of

global automorphic Sobolev spaces.’

• For example:
• Hilbert-Maass fundamental solutions,
• GL3 fundamental solution.

• In general when there is “mixed” discrete/continuous
spectrum.

Apparent symmetry which suggests functional equation may be
only superficial.
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Conclusion: Resolved

• Convergence of geometric description of afc heat kernel
and square integrability modulo Γ .

• Norms on groups, Garrett’s theorem, DGM bound.

• Eigenfunction expansion
• Existence, uniqueness of afc heat kernel as H−`-valued

function of t; in C1([0,∞),H−`); smoothness for t > 0.

• Nature of Laplace transform of afc heat kernel (whole).
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Conclusion: To Investigate

• Spectral Identity:
• Does the geometric construction yield a function in
C1([0,∞),H−`)?

• Nature of equality of geometric and spectral sides?

• What distribution to apply?
• Trace? (Automorphic truncation needed?)
• Evaluation?

• Break up spectral expansion to isolate term of interest?
• Serendipitous cancellation? (Jo-Lang 2009)
• Projection to subspace spanned by discrete spectrum.
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