Amy DeCelles

Introduction

Spectral Solution

Geometric Solution

The Automorphic Heat Kernel: Spectral and Geometric Points of View

Amy DeCelles

University of St. Thomas, Minnesota

University of Maine, October 5, 2019

Amy DeCelles

Introduction

Overview Heuristic Rigor

Spectral Solution

Geometric Solution

Applications to Number Theory

- asymptotic formulas for spectra of $\Gamma \backslash G$
 - Gangolli 1968, Donnelly 1982, Deitmar-Hoffman 1999
- relationship between $\eta\mbox{-invariants}$ and closed geodesics
 - Moscovici-Stanton 1989
- zeta functions from heat Eisenstein series
 - Jorgenson-Lang 1996, 2001, 2008, 2009, 2012
- sup-norm bounds for automorphic forms
 - Jo-Kra04, Jo-Kra11, Ary16, Fr-Jo-Kra16, Ary-Bal18
- limit formulas, Weyl-type asymptotic for period integrals
 - Tsuzuki 2008, 2009
- ave. holo. QUE for afc cfms for quaternion algebras
 - Aryasomayajula-Balasubramanyam 2018

Amy DeCelles

Introduction

Overview Heuristic Rigor

Spectral Solution

Geometric Solution

Typical Construction

Wind-up heat kernel on G/K

- Gangolli 1968:
 - integral representation for heat kernel on G/K
 - explicit formula when G/K of complex type
 - wind-up by averaging over cocompact Γ
- Special cases: $G/\mathsf{K}=\mathbb{H}^d$, $G=SL_n(\mathbb{C}),$ etc.
 - e.g. Fay 1977, Jorgenson-Lang 2009
- Convergence in general? (Existence?)
- Automorphic spectral expansion?
 - "conjectural" (Jorgenson-Lang 2009)

Our Approach

The Automorphic Heat Kernel

Amy DeCelles

Introduction

Overview Heuristic Rigor

Spectral Solution

Geometric Solution

Spectral:

- using global automorphic Sobolev theory
- construct automorphic heat kernel via automorphic spectral expansion in terms of cusp forms, Eisenstein series, and residues of Eisenstein series
 - existence of automorphic heat kernel
- prove uniqueness (semigroup theory)
- prove $C^\infty\text{-}convergence$ of automorphic spectral expansion and smoothness of automorphic heat kernel (for t>0)

Geometric:

- use known bound on heat kernel on G/K
- wind-up: proof involves norm on G

Amy DeCelles

Introduction

Overview Heuristic Rigor

Spectral Solution

Geometric Solution

1D Euclidean Heat Kernel

Heat kernel $\mathfrak{u}:\mathbb{R}\times(0,\infty)\to\mathbb{R}$ satisfies:

$$(\vartheta_t - \Delta) \mathfrak{u} = 0, \qquad \lim_{t \to 0^+} \mathfrak{u}(x, t) = \delta.$$

Apply Fourier transform \mathcal{F} :

$$(\mathfrak{d}_t \,+\, 4\pi^2\xi^2)\,\mathfrak{Fu} \;=\; 0, \qquad \lim_{t\to 0^+}(\mathfrak{Fu})(\xi,t) \;=\; \mathfrak{F\delta} \;=\; 1.$$

Considering ξ as fixed, $\mathfrak{Fu}(\xi,t)$ satisfies familiar IVP:

$$\frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{t}} \;=\; -4\pi^2 \xi^2 \, \mathrm{y}, \quad \mathrm{y}(0) = 1 \quad \Rightarrow \quad \mathrm{y}(\mathrm{t}) = e^{-4\pi^2 \xi^2 \mathrm{t}}$$

Fourier inversion: $u(x, t) = (4\pi t)^{-1/2} e^{-x^2/4t}$.

Amy DeCelles

Introduction

Overview Heuristic Rigor

Spectral Solution

Geometric Solution

Automorphic Analogue

- $X = \Gamma \setminus G/K$, with G, red. or ss. Lie group, max. compact $K \subset G$, arithmetic $\Gamma \subset G$
- Δ , Laplacian on $\Gamma \setminus G$ (the image of Casimir)
- + $\delta,$ automorphic delta distribution at $x_0=\Gamma\cdot \mathbf{1}\cdot K$

Want u(x,t) on $X\times (0,\infty)$ satisfying

$$(\vartheta_t - \Delta) \, \mathfrak{u} \, = \, 0 \qquad \text{ and } \qquad \lim_{t \to 0^+} \mathfrak{u}(x,t) \, = \, \delta$$

Apply spectral transform $\ensuremath{\mathfrak{F}}$ to get IVP on spectral side

$$({\mathfrak d}_t\,-\,\lambda_\xi)\,{\mathfrak F}{\mathfrak u}\,=\,0\qquad\text{ and }\qquad \lim_{t\to 0^+}{\mathfrak F}{\mathfrak u}(\xi,t)\,=\,{\mathfrak F}{\delta}$$

 $\label{eq:solve_lvp:f} \text{Solve IVP: } \mathfrak{F}(\mathfrak{u},\xi) = \mathfrak{F}\delta \cdot e^{\lambda_{\xi}t} \text{; spectral inversion} \to \mathfrak{u}(x,t).$

Amy DeCelles

Introduction

Overview Heuristic **Rigor**

Spectral Solution

Geometric Solution

(Global Afc) Sobolev Theory

Solve differential equations by division!

- Only for Schwartz functions? $\dots L^2$ -functions?
- Functions in (global afc) Sobolev spaces: $H^{s}(X)$

Other applications:

- lattice point counting in G/K (D. 2012)
- behavior of 4-loop supergraviton (Klinger-Logan, 2018)

Amy DeCelles

Introduction

Overview Heuristic **Rigor**

Spectral Solution

Geometric Solution

Time Parameter

• View heat kernel as H^s-valued function of t.

```
U:(0,\infty)\to H^s(X)
```

- Limit as $t \to 0^+$ is in $H^s\text{-topology}$
- Strong differentiation (vs weak) w.r.t. t
- Translation Lemma
 - from physical side to spectral side and back
 - limits, weak and strong differentiability, differential equations for U and $\mathcal{F} \circ U$

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theory Spectral Construction Uniqueness Smoothness Example

Geometric Solution

Spectral Theory for $SL_2(\mathbb{Z}) \backslash \mathfrak{H}$

Consider $X = SL_2(\mathbb{Z}) \setminus \mathfrak{H}$, with Laplacian $\Delta = y^2(\frac{d^2}{dx^2} + \frac{d^2}{dy^2})$.

Spectral inversion: eigenfunction expansion

$$\stackrel{L^2}{=} \sum_{F} \langle f, F \rangle \cdot F + \langle f, \Phi_0 \rangle \cdot \Phi_0 + \frac{1}{4\pi i} \int_{\frac{1}{2} + i\mathbb{R}} \langle f, E_s \rangle \cdot E_s \, ds$$

where

f

- F in o.n.b. of cusp forms,
- Φ_0 is the constant automorphic form with unit L²-norm,
- and Es is the real analytic Eisenstein series

Note: integrals are extensions by isometric isomorphisms of continuous linear functionals on $C_c^{\infty}(X)$.

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theory Spectral Construction Uniqueness Smoothness Example

Geometric Solution

Automorphic Spectral Theory

Abbreviate (and generalize): denote elements of the spectral "basis" (cusp forms, Eisenstein series, residues of Eisenstein series) uniformly as $\{\Phi_{\xi}\}_{\xi\in\Xi}$.

$$f = \int_{\Xi} \langle f, \Phi_{\xi} \rangle \cdot \Phi_{\xi} \, d\xi$$

View Ξ as a finite disjoint union of spaces of the form $\mathbb{Z}^n \times \mathbb{R}^m$ with usual measures.

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theory Spectral Construction Uniqueness Smoothness Example

Geometric Solution

Automorphic Sobolev Spaces

nner product
$$\langle$$
 , $angle_s$ (for 0 \leqslant $s\in\mathbb{Z}$) on $C^\infty_c(X)$ by

$$\langle \phi, \psi \rangle_s = \langle (1-\Delta)^s \phi, \psi \rangle_{L^2}$$

Sobolev spaces:

- H^s is Hilbert space completion of $C^\infty_c(X)$ w.r.t. topology induced by $\langle\,,\,\rangle_s$
- H^{-s} is Hilbert space dual of H^s .

Note:

- $H^0 = L^2(X)$
- Nesting: $H^s \hookrightarrow H^{s-1}$ for all s.

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theory Spectral Construction Uniqueness Smoothness Example

Geometric Solution

Diff'n and Spectral Transform

- spectral transform $\mathcal{F}: \mathsf{f} \mapsto \langle \mathsf{f}, \Phi_{\xi} \rangle$
- λ_{ξ} is the Δ -eigenvalue of Φ_{ξ}
- weighted L2-space $V^s\colon\, f\in V^s$ means $(1-\lambda_\xi)^{s/2}\,f\in L^2(\Xi)$

Note:

- Δ nonpositive symmetric operator $\Rightarrow \lambda_{\xi} \leqslant 0$
- $\Lambda:\xi\mapsto\lambda_\xi$ is differentiable and of moderate growth by a pre-trace formula

Key Results

Amy DeCelles

The Automorphic

Heat Kernel

Spectral Solution

Global Afc Sobolev Theory Spectral Construction Uniqueness Smoothness Example

Geometric Solution

- Every $u \in H^s$ has a spectral expansion, converging in the $H^s\mbox{-topology}.$
- Global automorphic Sobolev embedding theorem
 - For $s > k + (\dim X)/2$, $H^s \hookrightarrow C^k$.
 - Implies: $H^{\infty} = C^{\infty}$
- Pretrace formula $\Rightarrow \delta \in H^s$ for every $s < -(\overset{\dim X}{_2})$

$$\delta = \int_{\Xi} \overline{\Phi}_{\xi}(x_0) \Phi_{\xi} d\xi \quad (\text{conv. in } H^s, s < -(\overset{\text{dim } X/2}{2}))$$

• Expected spectral coefficient for automorphic heat kernel:

$$\mathfrak{F}\delta \cdot e^{\lambda_{\xi}t} = \overline{\Phi}_{\xi}(\mathbf{x}_{0}) \cdot e^{\lambda_{\xi}t}.$$

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theory

Spectral Construction Uniqueness Smoothness Example

Geometric Solution

Automorphic Heat Kernel

Let ℓ be the smallest integer *strictly greater* than dim X/2.

We define an automorphic heat kernel to be a map $U:(0,\infty)\to H^{-\ell}(X)$ such that

1 U satisfies the "initial condition,"

$$\lim_{t\to 0^+} \ U(t) \ = \ \delta \quad \text{ in } \ H^{-\ell}(X).$$

Provide a set of the set of t

$$U'(t) - \Delta U(t) = 0 \quad \text{in } H^s(X)$$

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theory

Spectral Construction Uniqueness Smoothness Example

Geometric Solution

Existence; Spectral Expansion

For
$$t \ge 0$$
, let $U(t) = \int_{\Xi} \overline{\Phi}_{\xi}(x_0) \cdot e^{\lambda_{\xi} \cdot t} \cdot \Phi_{\xi} d\xi$.
Theorem (1)

1 For $t \ge 0$, $U(t) \in H^{-\ell}$.

- Some s ≤ -l 5, viewing U as a H^s-valued function, U is strongly C¹ on (0,∞) and satisfies the "heat equation," i.e. for t > 0,

$$\frac{\mathrm{d}}{\mathrm{d}t} U(t) \ - \ \Delta U(t) \ = \ 0 \quad \text{ in } \mathrm{H}^{s},$$

where $\frac{d}{dt}U$ denotes the strong derivative of U. In particular, U(t) is an automorphic heat kernel.

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theory

Spectral Construction

Smoothnes Example

Geometric Solution

$\text{For }t\geqslant \text{0, let }\widetilde{U}(t):\ \xi\ \mapsto\ \overline{\Phi}_{\xi}(x_0)\,e^{\lambda_{\xi}\,t}.$

Prove that:

- \widetilde{U} takes values in $V^{-\ell}$.
- $\widetilde{U}(t) \to \mathfrak{F} \delta$ in $V^{-\ell}$ as $t \to 0^+.$
- \widetilde{U} is weakly C^k when viewed as a $V^{-\ell-2N}\text{-valued}$ function, for N>k
 - weakly C^2 when viewed as $V^{-\ell-5}\text{-valued}$ function
 - strongly C^1 (by weak-to-strong diff. principle)
- \widetilde{U} satisfies the (strong) differential equation

$$\frac{d}{dt}Y(t) = \lambda_{\xi}Y(t)$$

when viewed as a $V^{-\ell-5}$ -valued function. Use the translation lemma.

Proof outline

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theory Spectral Construction Uniqueness Smoothness

Geometric Solution

Uniqueness and improved differentiability

Theorem (2)

- **1** The automorphic heat kernel constructed in Theorem 1 is the **unique** automorphic heat kernel.
- 2 It is strongly C^1 as a $H^{-\ell-2}$ -valued function on $[0,\infty)$.

NB: By Thm 1, U is strongly C^1 as a $H^{-\ell-5}$ -valued function.

Idea of proof: use semigroup theory to prove uniqueness of solution to IVP on spectral side.

Proof outline

Introduction

The Automorphic

Heat Kernel Amy DeCelles

Spectral Solution

- Global Afc Sobolev Theory Spectral Construction Uniqueness
- Smoothness Example

Geometric Solution Prove uniqueness of \widetilde{U} as (suitable) V^s-valued solution to IVP:

$$rac{\mathrm{d}}{\mathrm{d}t}Y(t) \;=\; \lambda_{\xi}\,Y(t), \quad Y(0) = \overline{\Phi}_{\xi}(x_0)$$

Multiplication by λ_{ξ} : $V^{s+2} \rightarrow V^s$

- continuous linear map when V^{s+2} and V^s have their own (different) topologies as (differently) weighted L^2 spaces
- change perspective: view V^{s+2} as subspace of V^s
 - wreak continuity
 - unbounded operator on Hilbert space V^{s}
 - prove: densely defined, negative, self-adjoint
 - prove: resolvent set contains $(0,\infty)$
 - infinitesimal generator of a SCCSG (Hille-Yosida)

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theor Spectral Construction Uniqueness Smoothness Example

Geometric Solution

Abstract Cauchy Problem

Have shown that multiplication by λ_{ξ} is the infinitesimal generator of a SCCSG, so can use the following:

Proposition

Let G(t) be a SCSG in a Banach space V, let A be the infinitesimal generator for G(t) with domain D, and $v_0 \in D$. Then there is a unique function $[0, \infty) \rightarrow V$ that (i) is strongly continuous on $[0, \infty)$, (ii) is strongly differentiable on $(0, \infty)$, (iii) takes values in D, and (iv) solves the initial value problem,

$$\frac{d}{dt}Y(t) = A Y(t); Y(0) = v_0$$

Moreover, the solution is strongly C^1 on $[0, \infty)$.

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theory Spectral Construction Uniqueness

Smoothness Example

Geometric Solution

Theorem (3)

For t>0, the automorphic heat kernel lies in $C^\infty(X),$ and its automorphic spectral expansion

$$U(t) = \int_{\Xi} \overline{\Phi}_{\xi}(x_0) \cdot e^{\lambda_{\xi} t} \cdot \Phi_{\xi} d\xi$$

converges in the $C^{\infty}(X)$ -topology.

Proof outline.

- prove: $\widetilde{U}(t)\in V^s$ for all s
- thus $U(t)\in H^s(X)$ for all s
- global automorphic Sobolev embedding theorem $\Rightarrow U(t) \in C^k$ for all k

Smoothness

Amy DeCelles

Introduction

Spectral Solution

Global Afc Sobolev Theory Spectral Construction Uniqueness Smoothness Example

Geometric Solution

Corollary

The unique automorphic heat kernel on $X=SL_2(\mathbb{Z})\backslash\mathfrak{H}$ is:

$$\begin{aligned} \mathsf{U}(\mathsf{t}) &= \sum_{\mathsf{F}} \,\overline{\mathsf{F}}(\mathsf{x}_0) \, e^{\lambda_{\mathsf{F}} \mathsf{t}} \cdot \mathsf{F} \, + \, \overline{\Phi}_0(\mathsf{x}_0) \cdot \Phi_0 \\ &+ \frac{1}{4\pi \mathsf{i}} \int_{\frac{1}{2} + \mathsf{i}\mathbb{R}} \overline{\mathsf{E}}_s(\mathsf{x}_0) \, e^{s(s-1)\mathsf{t}} \cdot \mathsf{E}_s \, \mathsf{d}s \end{aligned}$$

For t > 0, U(t) is a smooth function on $SL_2(\mathbb{Z}) \setminus \mathfrak{H}$, and its spectral expansion converges to it in the C^{∞} -topology.

Example: $SL_2(\mathbb{Z}) \setminus \mathfrak{H}$

Amy DeCelles

Introduction

Spectral Solution

Geometric Solution

Bi-K-invariant heat kernel on G, conn. ss. Lie, finite center.

• Construct via spherical inversion:

$$h_t(\mathfrak{a}) \ = \ \int_{W \setminus \mathfrak{a}^*} e^{-t(|\lambda|^2 + |\rho|^2)} \phi_\lambda(\mathfrak{a}) \, |\mathbf{c}(\lambda)|^{-2} \, d\lambda \; .$$

Geometric Perspective

.

• For G complex, $h_t(a)$ is a constant times:

$$(4\pi t)^{-n/2} e^{-t|\rho|^2} \prod_{\alpha \in \Sigma^+} \frac{\alpha(\log \alpha)}{2\sinh \alpha(\log \alpha)} e^{-|\log \alpha|^2/4t}$$

For Γ discrete, try winding up: $\sum_{\gamma\in\Gamma}h_t(\gamma g).$

Convergence? What kind of function on $\Gamma \backslash G/K?$

Amy DeCelles

Introduction

Spectral Solution

Geometric Solution

Theorem (4) For t>0, the Poincaré series $\sum_{\gamma\in\Gamma}h_t(\gamma g)$

- converges absolutely and uniformly on compacts,
- is of moderate growth, and
- is square integrable mod Γ.

Proof uses:

• norms on groups arguments for convergence etc. (Garrett)

Geometric Construction

• non-trival (but not sharp) bound for h_t (Anker et al.)

Amy DeCelles

Introduction

Spectral Solution

Geometric Solution

G, countably based, locally compact, Hausdorf, unimodular topological group G with compact subgroup K

Norms on groups

Norm on G, a continuous function $\|\cdot\|:G\to(0,\infty)$ with:

- $\| \operatorname{id}_G \| = 1$, where id_G is the identity element in G,
- $\|g\| \ge 1$, for all g in G,
- $\|g\|\ =\ \|g^{-1}\|,$ for all g in G,
- submultiplicativity: $\|gh\| \leqslant \|g\| \cdot \|h\|$, for all g, h in G,
- K-invariance: ||kgk'|| = ||g||, all g in G, k, k' in K,
- integrability: for some $r_0 \ge 0$,

$$\int_G \|g\|^{-r}\,dg\ <\ \infty \quad (r>r_0).$$

Amy DeCelles

Introduction

Spectral Solution

Geometric Solution

Poincaré series

- G as in previous, Γ discrete subgroup
- Norm $\|\cdot\|$ on G with integrability exponent r_0 .
- For suitable $f: G \to \mathbb{C}$, have Poincaré series:

$$\mathsf{P}\acute{e}_{\mathsf{f}}(\mathfrak{g}) = \sum_{\gamma \in \Gamma} \mathsf{f}(\gamma \mathfrak{g})$$

Theorem (Garrett; see 2010 paper with Diaconu)

- If |f(g)| ≪ ||g||^{-r} for some r > r₀, then the associated Poincaré series converges absolutely and uniformly on compact sets to a function of moderate growth.
- If $|f(g)| \ll ||g||^{-2r}$ for some $r > r_0$, then $P\acute{e_f}$ is square integrable modulo Γ .

Amy DeCelles

Introduction

Spectral Solution

Geometric Solution

Outline of proof of Theorem 4

Prove:

- $\|g\| = \|kak'\| = e^{|\log a|}$ is a norm on G,
- with integrability expt: $r_0 = \sum_{\alpha \in \Sigma^+} m_\alpha \, |\alpha|.$

To apply Garrett's theorem, want:

$$h_t(a) \ \ll \ e^{-2r|\log a|} \text{, some } r > r_0.$$

Non-trivial (but not sharp) bound (Anker et. al) suffices:

$$h_t(\mathfrak{a}) \; \ll \; t^{-n/2} \; e^{-|\rho|^2 t - \langle \rho, \log \mathfrak{a} \rangle - |\log \mathfrak{a}|^2/4t} \quad (t > 0).$$

Further

Introduction

The Automorphic

Heat Kernel Amy DeCelles

Spectral Solution

Geometric Solution Poincaré series gives a weak automorphic heat kernel.

- Poincaré series is in $L^2(X) = H^0(X) \subset H^{-\ell}(X)$.
- Limit as $t \to 0^+$ approaches δ weakly in $H^{-\ell}.$
- Weakly differentiable as H^s-valued function of t and satisfies weak version of automorphic heat equation.

Is the Poincaré series an automorphic heat kernel, as we have defined it? **If so**, can apply uniqueness theorem:

- it has the automorphic spectral expansion stated earlier,
- converging in the C^∞ topology for (t>0),
- so for t > 0 is a smooth function on X.

Amy DeCelles

Introduction

Spectral Solution

Geometric Solution

Thank you for your attention!