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Applications to Number Theory

• asymptotic formulas for spectra of Γ\G

- Gangolli 1968, Donnelly 1982, Deitmar-Hoffman 1999

• relationship between η-invariants and closed geodesics

- Moscovici-Stanton 1989

• zeta functions from heat Eisenstein series

- Jorgenson-Lang 1996, 2001, 2008, 2009, 2012

• sup-norm bounds for automorphic forms

- Jo-Kra04, Jo-Kra11, Ary16, Fr-Jo-Kra16, Ary-Bal18

• limit formulas, Weyl-type asymptotic for period integrals

- Tsuzuki 2008, 2009

• ave. holo. QUE for afc cfms for quaternion algebras

- Aryasomayajula-Balasubramanyam 2018
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Typical Construction

Wind-up heat kernel on G/K

• Gangolli 1968:
• integral representation for heat kernel on G/K
• explicit formula when G/K of complex type
• wind-up by averaging over cocompact Γ

• Special cases: G/K = Hd, G = SLn(C), etc.
• e.g. Fay 1977, Jorgenson-Lang 2009

• Convergence in general? (Existence?)

• Automorphic spectral expansion?

• “conjectural” (Jorgenson-Lang 2009)
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Our Approach

Spectral:

• using global automorphic Sobolev theory

• construct automorphic heat kernel via automorphic
spectral expansion in terms of cusp forms, Eisenstein
series, and residues of Eisenstein series

- existence of automorphic heat kernel

• prove uniqueness (semigroup theory)

• prove C∞-convergence of automorphic spectral expansion
and smoothness of automorphic heat kernel (for t > 0)

Geometric:

• use known bound on heat kernel on G/K

• wind-up: proof involves norm on G
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1D Euclidean Heat Kernel

Heat kernel u : R× (0,∞)→ R satisfies:

(∂t − ∆)u = 0, lim
t→0+

u(x, t) = δ.

Apply Fourier transform F:

(∂t + 4π2ξ2)Fu = 0, lim
t→0+

(Fu)(ξ, t) = Fδ = 1.

Considering ξ as fixed, Fu(ξ, t) satisfies familiar IVP:

dy
dt = −4π2ξ2 y, y(0) = 1 ⇒ y(t) = e−4π2ξ2t

Fourier inversion: u(x, t) = (4πt)−1/2 e−x
2/4t .
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Automorphic Analogue

• X = Γ\G/K, with G, red. or ss. Lie group,
max. compact K ⊂ G, arithmetic Γ ⊂ G

• ∆, Laplacian on Γ\G (the image of Casimir)

• δ, automorphic delta distribution at x0 = Γ · 1 · K

Want u(x, t) on X× (0,∞) satisfying

(∂t − ∆)u = 0 and lim
t→0+

u(x, t) = δ

Apply spectral transform F to get IVP on spectral side

(∂t − λξ)Fu = 0 and lim
t→0+

Fu(ξ, t) = Fδ

Solve IVP: F(u, ξ) = Fδ · eλξt; spectral inversion → u(x, t).
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(Global Afc) Sobolev Theory

Physical Side
X, ∆

differentiation

F←−−→
F−1

Spectral Side
Ξ, λξ

multiplication

Solve differential equations by division!

• Only for Schwartz functions? . . .L2-functions?

• Functions in (global afc) Sobolev spaces: Hs(X)

Other applications:

• lattice point counting in G/K (D. 2012)

• behavior of 4-loop supergraviton (Klinger-Logan, 2018)



The
Automorphic
Heat Kernel

Amy DeCelles

Introduction

Overview

Heuristic

Rigor

Spectral
Solution

Geometric
Solution

Time Parameter

• View heat kernel as Hs-valued function of t.

U : (0,∞)→ Hs(X)

• Limit as t→ 0+ is in Hs-topology

• Strong differentiation (vs weak) w.r.t. t

• Translation Lemma

- from physical side to spectral side and back
- limits, weak and strong differentiability, differential

equations for U and F ◦U
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Spectral Theory for SL2(Z)\H

Consider X = SL2(Z)\H, with Laplacian ∆ = y2( d
2

dx2
+ d2

dy2 ).

Spectral inversion: eigenfunction expansion

f
L2
=

∑
F

〈f, F〉 · F + 〈f,Φ0〉 ·Φ0 +
1

4πi

∫
1
2+iR
〈f,Es〉 · Es ds

where

• F in o.n.b. of cusp forms,

• Φ0 is the constant automorphic form with unit L2-norm,

• and Es is the real analytic Eisenstein series

Note: integrals are extensions by isometric isomorphisms of
continuous linear functionals on C∞

c (X).
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Automorphic Spectral Theory

Abbreviate (and generalize): denote elements of the spectral
“basis” (cusp forms, Eisenstein series, residues of Eisenstein
series) uniformly as {Φξ}ξ∈Ξ.

f =

∫
Ξ

〈f,Φξ〉 ·Φξ dξ

View Ξ as a finite disjoint union of spaces of the form
Zn × Rm with usual measures.
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Automorphic Sobolev Spaces

Inner product 〈 , 〉s (for 0 6 s ∈ Z) on C∞
c (X) by

〈ϕ,ψ〉s = 〈(1 − ∆)sϕ,ψ〉L2

Sobolev spaces:

• Hs is Hilbert space completion of C∞
c (X) w.r.t. topology

induced by 〈 , 〉s
• H−s is Hilbert space dual of Hs.

Note:

• H0 = L2(X)

• Nesting: Hs ↪→ Hs−1 for all s.
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Diff’n and Spectral Transform

. . . H+s (1−∆)

≈
//

F ≈

��

H+s−2 (1−∆)

≈
//

F ≈

��

. . .

. . . V+s ×(1−λξ)
≈

// V+s−2 ×(1−λξ)
≈

// . . .

• spectral transform F : f 7→ 〈f,Φξ〉
• λξ is the ∆-eigenvalue of Φξ

• weighted L2-space Vs: f ∈ Vs means (1− λξ)
s/2 f ∈ L2(Ξ)

Note:

• ∆ nonpositive symmetric operator ⇒ λξ 6 0

• Λ : ξ 7→ λξ is differentiable and of moderate growth by a
pre-trace formula
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Key Results

• Every u ∈ Hs has a spectral expansion, converging in the
Hs-topology.

• Global automorphic Sobolev embedding theorem
• For s > k+ (dimX)/2, Hs ↪→ Ck.
• Implies: H∞ = C∞

• Pretrace formula ⇒ δ ∈ Hs for every s < −(dimX/2)

δ =

∫
Ξ

Φξ(x0)Φξ dξ (conv. in Hs, s < −(dimX/2))

• Expected spectral coefficient for automorphic heat kernel:

Fδ · eλξt = Φξ(x0) · eλξt.
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Automorphic Heat Kernel

Let ` be the smallest integer strictly greater than dimX/2.

We define an automorphic heat kernel to be a map
U : (0,∞)→ H−`(X) such that

1 U satisfies the “initial condition,”

lim
t→0+

U(t) = δ in H−`(X).

2 For some s 6 −`− 2, U is strongly differentiable as an
Hs-valued function and satisfies the “heat equation”, i.e.
for t > 0,

U ′(t) − ∆U(t) = 0 in Hs(X)
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Existence; Spectral Expansion

For t > 0, let U(t) =
∫
ΞΦξ(x0) · e

λξ t ·Φξ dξ .

Theorem (1)

1 For t > 0, U(t) ∈ H−`.

2 lim
t→0+

U(t) = δ in the topology of H−`.

3 For s 6 −`− 5, viewing U as a Hs-valued function, U is
strongly C1 on (0,∞) and satisfies the “heat equation,”
i.e. for t > 0,

d
dtU(t) − ∆U(t) = 0 in Hs,

where d
dtU denotes the strong derivative of U.

In particular, U(t) is an automorphic heat kernel.
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Proof outline

For t > 0, let Ũ(t) : ξ 7→ Φξ(x0) e
λξ t.

Prove that:

• Ũ takes values in V−`.

• Ũ(t)→ Fδ in V−` as t→ 0+.

• Ũ is weakly Ck when viewed as a V−`−2N-valued
function, for N > k

- weakly C2 when viewed as V−`−5-valued function
- strongly C1 (by weak-to-strong diff. principle)

• Ũ satisfies the (strong) differential equation

d
dtY(t) = λξY(t)

when viewed as a V−`−5-valued function.

Use the translation lemma.
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Uniqueness and improved
differentiability

Theorem (2)

1 The automorphic heat kernel constructed in Theorem 1 is
the unique automorphic heat kernel.

2 It is strongly C1 as a H−`−2-valued function on [0,∞).

NB: By Thm 1, U is strongly C1 as a H−`−5-valued function.

Idea of proof: use semigroup theory to prove uniqueness of
solution to IVP on spectral side.
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Proof outline

Prove uniqueness of Ũ as (suitable) Vs-valued solution to IVP:

d
dtY(t) = λξ Y(t), Y(0) = Φξ(x0)

Multiplication by λξ: Vs+2 → Vs

• continuous linear map when Vs+2 and Vs have their own
(different) topologies as (differently) weighted L2 spaces

• change perspective: view Vs+2 as subspace of Vs

- wreak continuity
- unbounded operator on Hilbert space Vs

- prove: densely defined, negative, self-adjoint
- prove: resolvent set contains (0,∞)
- infinitesimal generator of a SCCSG (Hille-Yosida)
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Abstract Cauchy Problem

Have shown that multiplication by λξ is the infinitesimal
generator of a SCCSG, so can use the following:

Proposition

Let G(t) be a SCSG in a Banach space V, let A be the
infinitesimal generator for G(t) with domain D, and v0 ∈ D.
Then there is a unique function [0,∞)→ V that (i) is strongly
continuous on [0,∞), (ii) is strongly differentiable on (0,∞),
(iii) takes values in D, and (iv) solves the initial value problem,

d
dtY(t) = A Y(t) ; Y(0) = v0 .

Moreover, the solution is strongly C1 on [0,∞).
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Smoothness

Theorem (3)

For t > 0, the automorphic heat kernel lies in C∞(X), and its
automorphic spectral expansion

U(t) =

∫
Ξ

Φξ(x0) · eλξ t ·Φξ dξ

converges in the C∞(X)-topology.

Proof outline.

• prove: Ũ(t) ∈ Vs for all s

• thus U(t) ∈ Hs(X) for all s

• global automorphic Sobolev embedding theorem
⇒ U(t) ∈ Ck for all k
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Example: SL2(Z)\H

Corollary

The unique automorphic heat kernel on X = SL2(Z)\H is:

U(t) =
∑
F

F(x0) e
λFt · F + Φ0(x0) ·Φ0

+
1

4πi

∫
1
2+iR

Es(x0) e
s(s−1)t · Es ds

For t > 0, U(t) is a smooth function on SL2(Z)\H, and its
spectral expansion converges to it in the C∞-topology.
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Geometric Perspective

Bi-K-invariant heat kernel on G, conn. ss. Lie, finite center.

• Construct via spherical inversion:

ht(a) =

∫
W\a∗

e−t(|λ|
2+|ρ|2)ϕλ(a) |c(λ)|

−2 dλ .

• For G complex, ht(a) is a constant times:

(4πt)−n/2 e−t|ρ|
2

∏
α∈Σ+

α(loga)

2 sinhα(loga)
e−| loga|2/4t .

For Γ discrete, try winding up:
∑
γ∈Γ

ht(γg).

Convergence? What kind of function on Γ\G/K?
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Geometric Construction

Theorem (4)

For t > 0, the Poincaré series
∑
γ∈Γ

ht(γg)

• converges absolutely and uniformly on compacts,

• is of moderate growth, and

• is square integrable mod Γ .

Proof uses:

• norms on groups arguments for convergence etc. (Garrett)

• non-trival (but not sharp) bound for ht (Anker et al.)
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Norms on groups

G, countably based, locally compact, Hausdorf, unimodular
topological group G with compact subgroup K

Norm on G, a continuous function ‖·‖ : G→ (0,∞) with:

• ‖ idG‖ = 1, where idG is the identity element in G,

• ‖g‖ > 1, for all g in G,

• ‖g‖ = ‖g−1‖, for all g in G,

• submultiplicativity: ‖gh‖ 6 ‖g‖ · ‖h‖, for all g,h in G,

• K-invariance: ‖kgk ′‖ = ‖g‖, all g in G, k, k ′ in K,

• integrability: for some r0 > 0,∫
G

‖g‖−r dg < ∞ (r > r0).
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Poincaré series

• G as in previous, Γ discrete subgroup

• Norm ‖·‖ on G with integrability exponent r0.

• For suitable f : G→ C, have Poincaré series:

Péf(g) =
∑
γ∈Γ

f(γg)

Theorem (Garrett; see 2010 paper with Diaconu)

• If |f(g)|� ‖g‖−r for some r > r0, then the associated
Poincaré series converges absolutely and uniformly on
compact sets to a function of moderate growth.

• If |f(g)|� ‖g‖−2r for some r > r0, then Péf is square
integrable modulo Γ .
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Outline of proof of Theorem 4

Prove:

• ‖g‖ = ‖kak ′‖ = e| loga| is a norm on G,

• with integrability expt: r0 =
∑
α∈Σ+ mα |α|.

To apply Garrett’s theorem, want:

ht(a) � e−2r| loga|, some r > r0.

Non-trivial (but not sharp) bound (Anker et. al) suffices:

ht(a) � t−n/2 e−|ρ|2t−〈ρ,loga〉−| loga|2/4t (t > 0).
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Further

Poincaré series gives a weak automorphic heat kernel.

• Poincaré series is in L2(X) = H0(X) ⊂ H−`(X).

• Limit as t→ 0+ approaches δ weakly in H−`.

• Weakly differentiable as Hs-valued function of t and
satisfies weak version of automorphic heat equation.

Is the Poincaré series an automorphic heat kernel, as we have
defined it? If so, can apply uniqueness theorem:

• it has the automorphic spectral expansion stated earlier,

• converging in the C∞ topology for (t > 0),

• so for t > 0 is a smooth function on X.
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Thank you for your attention!
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