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Applications to Number Theory:

• Weyl Law (Müller, 2007)

• periods of wave functions (Tsuzuki 2009)

• integral representations for Selberg zeta functions
(Jorgenson and Lang 2009)

• sup norm bounds for Bergman kernels (e.g. Bouche 1996,
Berman 2004, Jorgenson and Kramer 2004,
Aryasomayajula 2016)

• etc.

Typically: wind-up free-space heat kernel

• explicit formulas for heat kernels on symmetric spaces of
complex type (Gangolli)

• automorphic spectral expansion?
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Our Approach

Solve automorphic PDE:

• use spectral theory of automorphic forms

• construct solution via automorphic spectral expansion in
terms of cusp forms, Eisenstein series, and residues of
Eisenstein series

• framework of global automorphic Sobolev theory gives
clear conclusions about convergence
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1D Euclidean Heat Kernel

Heat equation:
(∂t − ∆)u = 0

Heat kernel is fundamental solution, i.e. satisfies

lim
t→0

u(x, t) = δ

Use Fourier transform and Fourier inversion to derive

u(x, t) =
e−x

2/4t

2
√
πt

x ∈ R, t > 0
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Heuristic Derivation

Apply Fourier transform F to heat equation:

(∂t − ∆)u = 0 ⇒ (∂t + 4π2ξ2)Fu = 0

since (d.u.t.i.s and i.b.p)

F(∂tu) = ∂t(Fu) and F(∆u) = −4π2ξ2(Fu)

Considering ξ as fixed, Fu(ξ, t) satisfies familiar ODE

dy
dt = −4π2ξ2 y

so, for some Cξ independent of t,

(Fu)(ξ, t) = Cξe
−4π2ξ2 t
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Heuristic Derivation (con’t)

Apply Fourier transform F to initial condition:

lim
t→0

u(x, t) = δ ⇒ lim
t→0

(Fu)(ξ, t) = Fδ = 1

But (Fu)(ξ, t) = Cξe
−4π2ξ2 t, so Cξ = 1.

Fourier inversion:

u(x, t) =

∫
R
e−4π2ξ2 t · e2πixξ dξ

=

∫
R
e−π(4πtξ

2 − 2ixξ) dξ

=
e−x

2/4t

2
√
πt
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Further Details Needed

• lim
t→0

u(x, t) = δ in what space of functions of x?

• Fix one variable, and let the other vary?

• Extend Fourier transform beyond L2? to apply e.g. to δ?

• u is “nice enough”?
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The
automorphic
heat kernel as a
Hs-valued
function of t

Sketch of proof

Uniqueness

Set-up and Heuristic

• G is a reductive or semi-simple Lie group

• with discrete subgroup Γ

• and maximal compact subgroup K

• X = Γ\G/K

• ∆ is the Laplacian on Γ\G (the image of Casimir)

• δ is the automorphic delta distribution at x0 = Γ · 1 · K

Want to construct u(x, t) on X× (0,∞) satisfying

(∂t − ∆)u = 0 and lim
t→0

u(x, t) = δ

. . . suitably interpreted.
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Strategy (roughly)

Apply a spectral transform in the spatial variable to:

• both sides of the heat equation

• both sides of the initial condition

Need a framework broad enough to apply the spectral
transform to the delta distribution

• not a test function (nor a Schwartz function)

• not even an element of L2

Global automorphic Sobolev theory (D. 2011) allows us to treat
the spectral transform, inversion, and differentiation in a
rigorous and robust setting.
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Spectral Theory for SL2(Z)\H

Consider X = SL2(Z)\H, with Laplacian ∆ = y2( d
2

dx2
+ d2

dy2 ).

Spectral inversion: eigenfunction expansion

f
L2
=

∑
F

〈f, F〉 · F + 〈f,Φ0〉 ·Φ0 +
1

4πi

∫
1
2+iR
〈f,Es〉 · Es ds

where

• F in o.n.b. of cusp forms,

• Φ0 is the constant automorphic form with unit L2-norm,

• and Es is the real analytic Eisenstein series

Note: integrals are extensions by isometric isomorphisms of
continuous linear functionals on C∞

c (X).
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Automorphic Spectral Theory

Abbreviate (and generalize): denote elements of the spectral
“basis” (cusp forms, Eisenstein series, residues of Eisenstein
series) uniformly as {Φξ}ξ∈Ξ.

f =

∫
Ξ

〈f,Φξ〉 ·Φξ dξ

View Ξ as a disjoint union of Euclidean spaces with the
counting measure on each copy of R0 and the usual Euclidean
measure on each copy of Rn.
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Automorphic Sobolev Spaces

Inner product 〈 , 〉s (for 0 < s ∈ Z) on C∞
c (X) by

〈ϕ,ψ〉s = 〈(1 − ∆)sϕ,ψ〉L2

Sobolev spaces:

• Hs is Hilbert space completion of C∞
c (X) w.r.t. topology

induced by 〈 , 〉s
• H−s is Hilbert space dual of Hs.

Note:

• H0 = L2(X)

• Nesting: Hs ↪→ Hs−1 for all s.
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Diff’n and Spectral Transform

. . . H+s (1−∆)

≈
//

F ≈

��

H+s−2 (1−∆)

≈
//

F ≈

��

. . .

. . . V+s ×(1−λξ)
≈

// V+s−2 ×(1−λξ)
≈

// . . .

• spectral transform F : f 7→ 〈f,Φξ〉
• λξ is the ∆-eigenvalue of Φξ

• weighted L2-space Vs: f ∈ Vs means (1− λξ)
s/2 f ∈ L2(Ξ)

Note:

• ∆ nonpositive symmetric operator ⇒ λξ > 0

• Λ : ξ 7→ λξ is differentiable and of moderate growth



Automorphic
Heat Kernels

Amy DeCelles

Introduction

Automorphic
Case

Global
Automorphic
Sobolev Theory

The
automorphic
heat kernel as a
Hs-valued
function of t

Sketch of proof

Uniqueness

Diff’n and Spectral Transform

. . . H+s (1−∆)

≈
//

F ≈

��

H+s−2 (1−∆)

≈
//

F ≈

��

. . .

. . . V+s ×(1−λξ)
≈

// V+s−2 ×(1−λξ)
≈

// . . .

• spectral transform F : f 7→ 〈f,Φξ〉
• λξ is the ∆-eigenvalue of Φξ

• weighted L2-space Vs: f ∈ Vs means (1− λξ)
s/2 f ∈ L2(Ξ)

Note:

• ∆ nonpositive symmetric operator ⇒ λξ > 0

• Λ : ξ 7→ λξ is differentiable and of moderate growth



Automorphic
Heat Kernels

Amy DeCelles

Introduction

Automorphic
Case

Global
Automorphic
Sobolev Theory

The
automorphic
heat kernel as a
Hs-valued
function of t

Sketch of proof

Uniqueness

Key Results

• Every u ∈ Hs has a spectral expansion, converging in the
Hs-topology.

• Global automorphic Sobolev embedding theorem
• For s > k+ (dimX)/2, Hs ↪→ Ck.
• Implies: H∞ = C∞

• Pretrace formula ⇒ δ ∈ Hs for every s < −(dimX/2)

• So

δ =

∫
Ξ

Φξ(x0)Φξ dξ (conv. in Hs, s < −(dimX/2))



Automorphic
Heat Kernels

Amy DeCelles

Introduction

Automorphic
Case

Global
Automorphic
Sobolev Theory

The
automorphic
heat kernel as a
Hs-valued
function of t

Sketch of proof

Uniqueness

Automorphic Heat Kernel
Let ` be the smallest integer strictly greater than dimX/2.

We define an automorphic heat kernel to be a map
U : (0,∞)→ H−`(X) such that

1 U is strongly differentiable on (0,∞), i.e. for t > 0,

U ′(t) = lim
h→0

U(t+ h) −U(t)

h
exists in H−`(X)

2 U satisfies the “initial condition”

lim
t→0

U(t) = δ in H−`(X)

3 U satisfies the heat equation, i.e. for all t > 0,

U ′(t) − ∆U(t) = 0 in H−`−2(X)
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Theorem
For t > 0, the following automorphic spectral expansion

U(t) =

∫
Ξ

Φξ(x0) · eλξ t ·Φξ dξ

converges with respect to all global automorphic Sobolev
topologies, and thus converges in C∞(X). For t = 0 the
expansion converges in the H−`-topology to the automorphic
delta distribution. Thus this expansion defines an automorphic
heat kernel.
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Corollary

In the case of X = SL2(Z)\H, we have the following
automorphic spectral expansion for the automorphic heat
kernel,

U(t) =
∑
F

F(x0) e
λFt · F + Φ0(x0) ·Φ0

+
1

4πi

∫
1
2+iR

Es(x0) e
s(s−1)t · Es ds

For t > 0, the spectral expansion converges in the C∞-topology
(so, in particular, uniformly pointwise) to a smooth function on
SL2(Z)\H, and for t = 0, it converges to the automorphic delta
distribution.
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The Spectral Side

Since F and F−1 are isometric isomorphisms H−` ↔ V−`,

• strong diff. of U ⇐⇒ strong diff. of F ◦U
• U satisfies the heat equation

U ′(t) = ∆U(t) in H−`

if and only if F ◦U satisfies the “eigenfunction equation”

(F ◦U) ′(t) = Λ⊗ (F ◦U)(t) in V−`

where Λ : Ξ→ R by Λ(ξ) = λξ
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Proposed Spectral Coefficients

For each t > 0, let Ũ(t) be the map

Ũ(t) : ξ 7→ Φξ(x0) · eλξ t = Φξ(x0) · e−|λξ| t

Then Ũ as a V−`-valued function of t, since

• ξ 7→ Φξ(x0) lies in V−`, and

• ξ 7→ e−|λξ|t is continuous and bounded for t > 0
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With Ũ(t) : Ξ→ V−` by ξ 7→ Φξ(x0) · e−|λξ| t, as above,

• Weak-to-strong smoothness: Ũ is strongly differentiable,
as a V−`-valued function of t

• Hahn-Banach theorem:

Ũ ′(t) = Λ⊗ Ũ(t)

• for t > 0, for all s, (1 + |λξ|)
s/2e−|λξ|t is continuous and

bounded so, for t > 0, Ũ(t) lies in V∞.
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Back to Physical Side

Now let U(t) = F−1 ◦ Ũ, i.e.

U(t) =

∫
Ξ

Φξ(x0) · e−|λξ| t ·Φξ dξ

By the corresponding properties for Ũ, we can conclude

• U strongly diff. H−`-valued function

• U satisfies the heat equation

• U(t) is in fact smooth for t > 0
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Uniqueness

Spectral transform of an automorphic heat kernel satisfies

d
dtY = Λ⊗ Y

where Y is a V−`-valued function of t.

Ansatz: general solution is v⊗ E, where

• v is a function in V−`, not depending on t, and

• E is the (function-on-Ξ)-valued function of t given by

E(t) : ξ 7→ eλξ t

Then Ũ would be the unique solution satisfying the initial
condition. Apply inverse spectral transform: uniqueness of
automorphic heat kernel.



Automorphic
Heat Kernels

Amy DeCelles

Introduction

Automorphic
Case

Global
Automorphic
Sobolev Theory

The
automorphic
heat kernel as a
Hs-valued
function of t

Sketch of proof

Uniqueness

Uniqueness

Spectral transform of an automorphic heat kernel satisfies
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Thank you for your attention!
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