Amy DeCelles

Introduction

Automorphi Case

Global Automorphic Sobolev Theory and Automorphic Heat Kernels

Amy DeCelles

University of St. Thomas, Minnesota

SUNY Buffalo, September 16, 2017

Amy DeCelles

Introduction

Euclidean Case (Heuristic)

Automorphic Case

Automorphic Heat Kernels

Applications to Number Theory:

- Weyl Law (Müller, 2007)
- periods of wave functions (Tsuzuki 2009)
- integral representations for Selberg zeta functions (Jorgenson and Lang 2009)
- sup norm bounds for Bergman kernels (e.g. Bouche 1996, Berman 2004, Jorgenson and Kramer 2004, Aryasomayajula 2016)

• etc.

Amy DeCelles

Introduction

Euclidean Case (Heuristic)

Automorphic Case

Automorphic Heat Kernels

Applications to Number Theory:

- Weyl Law (Müller, 2007)
- periods of wave functions (Tsuzuki 2009)
- integral representations for Selberg zeta functions (Jorgenson and Lang 2009)
- sup norm bounds for Bergman kernels (e.g. Bouche 1996, Berman 2004, Jorgenson and Kramer 2004, Aryasomayajula 2016)
- etc.

Typically: wind-up free-space heat kernel

- explicit formulas for heat kernels on symmetric spaces of complex type (Gangolli)
- automorphic spectral expansion?

Amy DeCelles

Introduction

Euclidean Case (Heuristic)

Automorphic Case

Solve automorphic PDE:

- use spectral theory of automorphic forms
- construct solution via automorphic spectral expansion in terms of cusp forms, Eisenstein series, and residues of Eisenstein series

Our Approach

• framework of global automorphic Sobolev theory gives clear conclusions about convergence

Amy DeCelles

Introduction

Euclidean Case (Heuristic)

Automorphic Case

Heat equation:

$$(\partial_t - \Delta)u = 0$$

Heat kernel is fundamental solution, i.e. satisfies

$$\lim_{t\to 0} u(x,t) = \delta$$

Use Fourier transform and Fourier inversion to derive

$$u(x,t) = \frac{e^{-x^2/4t}}{2\sqrt{\pi t}} \qquad x \in \mathbb{R}, \ t > 0$$

1D Euclidean Heat Kernel

Amy DeCelles

Introductio

Euclidean Case (Heuristic)

Automorphic Case

Heuristic Derivation

Apply Fourier transform $\ensuremath{\mathcal{F}}$ to heat equation:

$$(\partial_t - \Delta) u = 0 \quad \Rightarrow \quad (\partial_t + 4\pi^2 \xi^2) \mathfrak{F} u = 0$$

since (d.u.t.i.s and i.b.p)

 $\mathfrak{F}(\mathfrak{d}_t\mathfrak{u}) \ = \ \mathfrak{d}_t(\mathfrak{F}\mathfrak{u}) \quad \text{and} \quad \mathfrak{F}(\Delta\mathfrak{u}) \ = \ -4\pi^2\xi^2(\mathfrak{F}\mathfrak{u})$

Amy DeCelles

Heuristic Derivation

Introduction

Euclidean Case (Heuristic)

Automorphic Case Apply Fourier transform \mathcal{F} to heat equation:

$$(\partial_t - \Delta) u = 0 \quad \Rightarrow \quad (\partial_t + 4\pi^2 \xi^2) \mathfrak{F} u = 0$$

since (d.u.t.i.s and i.b.p)

 $\mathfrak{F}(\mathfrak{d}_{\mathfrak{t}}\mathfrak{u}) \ = \ \mathfrak{d}_{\mathfrak{t}}(\mathfrak{F}\mathfrak{u}) \quad \text{and} \quad \mathfrak{F}(\Delta\mathfrak{u}) \ = \ -4\pi^{2}\xi^{2}(\mathfrak{F}\mathfrak{u})$

Considering ξ as fixed, $\mathfrak{Fu}(\xi,t)$ satisfies familiar ODE

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -4\pi^2\xi^2 y$$

so, for some C_{ξ} independent of t,

$$(\mathfrak{Fu})(\xi, t) = C_{\xi} e^{-4\pi^2 \xi^2 t}$$

Amy DeCelles

Introduction

Euclidean Case (Heuristic)

Automorphic Case

Heuristic Derivation (con't)

Apply Fourier transform \mathcal{F} to initial condition:

$$\lim_{t \to 0} \mathfrak{u}(x,t) \; = \; \delta \quad \Rightarrow \quad \lim_{t \to 0} (\mathfrak{Fu})(\xi,t) \; = \; \mathfrak{F}\delta \; = \; 1$$

But
$$(\mathfrak{Fu})(\xi, t) = C_{\xi}e^{-4\pi^{2}\xi^{2}t}$$
, so $C_{\xi} = 1$.

Amy DeCelles

Introduction

Euclidean Case (Heuristic)

Automorphic Case

Heuristic Derivation (con't)

Apply Fourier transform \mathcal{F} to initial condition:

 $\lim_{t\to 0}\, u(x,t) \;=\; \delta \quad \Rightarrow \quad \lim_{t\to 0}(\mathfrak{Fu})(\xi,t) \;=\; \mathfrak{F}\delta \;=\; 1$

But
$$(\mathfrak{Fu})(\xi, t) = C_{\xi}e^{-4\pi^2\xi^2 t}$$
, so $C_{\xi} = 1$.

Fourier inversion:

$$u(\mathbf{x}, \mathbf{t}) = \int_{\mathbb{R}} e^{-4\pi^2 \xi^2 \mathbf{t}} \cdot e^{2\pi \mathbf{i} \mathbf{x} \xi} d\xi$$
$$= \int_{\mathbb{R}} e^{-\pi (4\pi \mathbf{t} \xi^2 - 2\mathbf{i} \mathbf{x} \xi)} d\xi$$
$$= \frac{e^{-\mathbf{x}^2/4\mathbf{t}}}{2\sqrt{\pi \mathbf{t}}}$$

Amy DeCelles

Introduction

Euclidean Case (Heuristic)

Automorphic Case

Further Details Needed

- $\lim_{t\to 0} \mathfrak{u}(x,t) = \delta$ in what space of functions of x?
- Fix one variable, and let the other vary?
- Extend Fourier transform beyond L^2 ? to apply e.g. to δ ?
- u is "nice enough"?

Amy DeCelles

Introduction

Automorphic Case

- Global Automorphic Sobolev Theory The automorphic heat kernel as a H^{*}-valued function of t Sketch of proof
- Uniqueness

Set-up and Heuristic

- G is a reductive or semi-simple Lie group
- with discrete subgroup Γ
- and maximal compact subgroup K
- $X = \Gamma \backslash G / K$
- Δ is the Laplacian on $\Gamma \setminus G$ (the image of Casimir)
- + δ is the automorphic delta distribution at $x_0 = \Gamma \cdot 1 \cdot K$

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory The automorphic heat kernel as a H⁺-valued function of t Sketch of proof

Set-up and Heuristic

- G is a reductive or semi-simple Lie group
- with discrete subgroup Γ
- and maximal compact subgroup K
- $X = \Gamma \backslash G / K$
- Δ is the Laplacian on $\Gamma \setminus G$ (the image of Casimir)
- + δ is the automorphic delta distribution at $x_0 = \Gamma \cdot 1 \cdot K$

Want to construct u(x, t) on $X \times (0, \infty)$ satisfying

$$(\partial_t - \Delta) u = 0$$
 and $\lim_{t \to 0} u(x, t) = \delta$

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory The automorphic heat kernel as a H⁺-valued function of t Sketch of proof Uniqueness

Set-up and Heuristic

- G is a reductive or semi-simple Lie group
- with discrete subgroup Γ
- and maximal compact subgroup K
- $X = \Gamma \backslash G / K$
- Δ is the Laplacian on $\Gamma \setminus G$ (the image of Casimir)
- + δ is the automorphic delta distribution at $x_0 = \Gamma \cdot 1 \cdot K$

Want to construct u(x, t) on $X \times (0, \infty)$ satisfying

$$(\partial_t - \Delta) u = 0$$
 and $\lim_{t \to 0} u(x, t) = \delta$

... suitably interpreted.

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory The automorphic heat kernel as a H*-valued function of t Sketch of proof

Strategy (roughly)

Apply a spectral transform in the spatial variable to:

- both sides of the heat equation
- both sides of the initial condition

Need a framework broad enough to apply the spectral transform to the delta distribution

- not a test function (nor a Schwartz function)
- not even an element of L²

Global automorphic Sobolev theory (D. 2011) allows us to treat the spectral transform, inversion, and differentiation in a rigorous and robust setting.

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H*-valued function of t Sketch of proof Uniqueness

Spectral Theory for $SL_2(\mathbb{Z}) \backslash \mathfrak{H}$

Consider $X = SL_2(\mathbb{Z}) \setminus \mathfrak{H}$, with Laplacian $\Delta = y^2(\frac{d^2}{dx^2} + \frac{d^2}{dy^2})$.

Spectral inversion: eigenfunction expansion

$$\stackrel{L^2}{=} \sum_{F} \langle f, F \rangle \cdot F + \langle f, \Phi_0 \rangle \cdot \Phi_0 + \frac{1}{4\pi i} \int_{\frac{1}{2} + i\mathbb{R}} \langle f, E_s \rangle \cdot E_s \, ds$$

where

f

- F in o.n.b. of cusp forms,
- Φ_0 is the constant automorphic form with unit L²-norm,
- and Es is the real analytic Eisenstein series

Note: integrals are extensions by isometric isomorphisms of continuous linear functionals on $C_c^{\infty}(X)$.

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H^{*}-valued function of t Sketch of proof Uniqueness

Automorphic Spectral Theory

Abbreviate (and generalize): denote elements of the spectral "basis" (cusp forms, Eisenstein series, residues of Eisenstein series) uniformly as $\{\Phi_{\xi}\}_{\xi\in\Xi}$.

$$f = \int_{\Xi} \langle f, \Phi_{\xi} \rangle \cdot \Phi_{\xi} \ d\xi$$

View Ξ as a disjoint union of Euclidean spaces with the counting measure on each copy of \mathbb{R}^0 and the usual Euclidean measure on each copy of \mathbb{R}^n .

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H*-valued function of t Sketch of proof Uniqueness

Automorphic Sobolev Spaces

nner product
$$\langle$$
 , $angle_s$ (for 0 $< s \in \mathbb{Z}$) on $C^\infty_c(X)$ by

$$\langle \phi, \psi \rangle_s = \langle (1-\Delta)^s \phi, \psi \rangle_{L^2}$$

Sobolev spaces:

- + H^s is Hilbert space completion of $C^\infty_c(X)$ w.r.t. topology induced by $\langle\,,\,\rangle_s$
- H^{-s} is Hilbert space dual of H^s .

Note:

h

- $H^0 = L^2(X)$
- Nesting: $H^s \hookrightarrow H^{s-1}$ for all s.

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H*-valued function of t Sketch of proof Uniqueness

Diff'n and Spectral Transform

- spectral transform $\mathfrak{F}:\mathsf{f}\mapsto\langle\mathsf{f},\Phi_\xi\rangle$
- λ_{ξ} is the Δ -eigenvalue of Φ_{ξ}
- weighted L2-space Vs: $f\in V^s$ means $(1-\lambda_\xi)^{s/2}\,f\in L^2(\Xi)$

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H*-valued function of t Sketch of proof Uniqueness

Diff'n and Spectral Transform

- spectral transform $\mathfrak{F}:\mathsf{f}\mapsto\langle\mathsf{f},\Phi_\xi\rangle$
- λ_{ξ} is the Δ -eigenvalue of Φ_{ξ}
- weighted L2-space $V^s\colon\, f\in V^s$ means $(1-\lambda_\xi)^{s/2}\,f\in L^2(\Xi)$

Note:

- Δ nonpositive symmetric operator $\Rightarrow \lambda_{\xi} \geqslant 0$
- $\Lambda: \xi \mapsto \lambda_{\xi}$ is differentiable and of moderate growth

Key Results

Amy DeCelles

Automorphic Heat Kernels

Automorphic Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H^{*}-valued function of t Sketch of proof Uniqueness

- Every $u \in H^s$ has a spectral expansion, converging in the $H^s\mbox{-topology}.$
- Global automorphic Sobolev embedding theorem
 - For $s > k + (\dim X)/2$, $H^s \hookrightarrow C^k$.
 - Implies: $H^{\infty} = C^{\infty}$
- Pretrace formula $\Rightarrow \delta \in H^s$ for every $s < -(^{\dim X\!/\!2})$
- So

$$\delta = \int_{\Xi} \overline{\Phi}_{\xi}(x_0) \, \Phi_{\xi} \, d\xi \qquad (\text{conv. in } H^s, s < -(\overset{\text{dim} X/2}{2}))$$

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H^s-valued function of t

Sketch of proof

Uniqueness

Automorphic Heat Kernel

Let ℓ be the smallest integer *strictly greater* than dim X/2.

Amy DeCelles

Introduction

Automorph Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H^{*}-valued function of t

Sketch of proof

Uniqueness

Automorphic Heat Kernel

Let ℓ be the smallest integer *strictly greater* than dim X/2.

We define an automorphic heat kernel to be a map $U:(0,\infty)\to H^{-\ell}(X)$ such that

Amy DeCelles

Introduction

Automorphi Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H^{*}-valued function of t Sketch of proof

Uniqueness

Automorphic Heat Kernel

Let ℓ be the smallest integer *strictly greater* than dim X/2.

We define an automorphic heat kernel to be a map $U:(0,\infty)\to H^{-\ell}(X)$ such that

1 U is strongly differentiable on $(0, \infty)$, i.e. for t > 0,

$$U'(t) = \lim_{h \to 0} \frac{U(t+h) - U(t)}{h} \qquad \text{ exists in } H^{-\ell}(X)$$

Amy DeCelles

Introduction

Automorphi Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H*-valued function of t Sketch of proof

Automorphic Heat Kernel

Let ℓ be the smallest integer *strictly greater* than dim X/2.

We define an automorphic heat kernel to be a map $U:(0,\infty)\to H^{-\ell}(X)$ such that

1 U is strongly differentiable on $(0, \infty)$, i.e. for t > 0,

$$U'(t) \hspace{0.2cm} = \hspace{0.2cm} \underset{h \rightarrow 0}{\text{lim}} \hspace{0.2cm} \frac{U(t+h)-U(t)}{h} \hspace{1cm} \text{exists in} \hspace{0.2cm} H^{-\ell}(X)$$

2 U satisfies the "initial condition"

$$\lim_{t\to 0} U(t) = \delta \qquad \text{ in } H^{-\ell}(X)$$

Amy DeCelles

Introduction

Automorphi Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H*-valued function of t Sketch of proof Uniqueness

Automorphic Heat Kernel

Let ℓ be the smallest integer *strictly greater* than dim X/2.

We define an automorphic heat kernel to be a map $U:(0,\infty)\to H^{-\ell}(X)$ such that

1 U is strongly differentiable on $(0, \infty)$, i.e. for t > 0,

$$U'(t) = \lim_{h \to 0} \frac{U(t+h) - U(t)}{h} \qquad \text{ exists in } H^{-\ell}(X)$$

2 U satisfies the "initial condition"

$$\lim_{t\to 0} U(t) = \delta \qquad \text{ in } H^{-\ell}(X)$$

3 U satisfies the heat equation, i.e. for all t > 0,

 $U'(t) - \Delta U(t) = 0 \qquad \text{ in } H^{-\ell-2}(X)$

Amy DeCelles

Introduction

Automorphi Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H^s-valued function of t Sketch of proof

Uniqueness

Theorem

For t > 0, the following automorphic spectral expansion

$$U(t) \ = \ \int_{\Xi} \overline{\Phi}_{\xi}(x_0) \cdot e^{\lambda_{\xi} \cdot t} \cdot \Phi_{\xi} \, d\xi$$

converges with respect to all global automorphic Sobolev topologies, and thus converges in $C^{\infty}(X)$. For t = 0 the expansion converges in the $H^{-\ell}$ -topology to the automorphic delta distribution. Thus this expansion defines an automorphic heat kernel.

Amy DeCelles

Introduction

Automorph Case

Global Automorphic Sobolev Theory

The automorphic heat kernel as a H^{*}-valued function of t

Uniquenecc

Corollary

In the case of $X=SL_2(\mathbb{Z})\backslash\mathfrak{H},$ we have the following automorphic spectral expansion for the automorphic heat kernel,

$$U(t) = \sum_{F} \overline{F}(x_0) e^{\lambda_F t} \cdot F + \overline{\Phi}_0(x_0) \cdot \Phi_0$$
$$+ \frac{1}{4\pi i} \int_{\frac{1}{2} + i\mathbb{R}} \overline{E}_s(x_0) e^{s(s-1)t} \cdot E_s \, ds$$

For t>0, the spectral expansion converges in the C^∞ -topology (so, in particular, uniformly pointwise) to a smooth function on $SL_2(\mathbb{Z})\backslash\mathfrak{H}$, and for t=0, it converges to the automorphic delta distribution.

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory The automorphic heat kernel as a H^s-valued function of t

Sketch of proof

Uniqueness

The Spectral Side

Since \mathcal{F} and \mathcal{F}^{-1} are isometric isomorphisms $H^{-\ell} \leftrightarrow V^{-\ell}$, • strong diff. of $U \iff$ strong diff. of $\mathcal{F} \circ U$

• U satisfies the heat equation

$$U'(t) = \Delta U(t)$$
 in $H^{-\ell}$

if and only if $\mathfrak{F} \circ U$ satisfies the "eigenfunction equation"

$$(\mathfrak{F} \circ U)'(t) = \Lambda \otimes (\mathfrak{F} \circ U)(t)$$
 in $V^{-\ell}$

where $\Lambda:\Xi\to\mathbb{R}$ by $\Lambda(\xi)=\lambda_\xi$

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory The

automorphic heat kernel as a H^s-valued function of t

Sketch of proof

Uniqueness

Proposed Spectral Coefficients

For each $t \ge 0$, let $\widetilde{U}(t)$ be the map

$$\widetilde{U}(t): \xi \mapsto \overline{\Phi}_{\xi}(x_0) \cdot e^{\lambda_{\xi} t} = \overline{\Phi}_{\xi}(x_0) \cdot e^{-|\lambda_{\xi}| t}$$

Then \widetilde{U} as a $V^{-\ell}\text{-valued}$ function of t, since

- $\xi \mapsto \overline{\Phi}_{\xi}(x_0)$ lies in $V^{-\ell}$, and
- $\xi\mapsto e^{-|\lambda_\xi|t}$ is continuous and bounded for $t\geqslant 0$

Amy DeCelles

Introduction

Automorphi Case

- Global Automorphic Sobolev Theory
- The automorphic heat kernel as a H^s-valued function of t

Sketch of proof

Uniqueness

- With $\widetilde{U}(t): \Xi \to V^{-\ell}$ by $\xi \mapsto \overline{\Phi}_{\xi}(x_0) \cdot e^{-|\lambda_{\xi}| t}$, as above,
 - Weak-to-strong smoothness: \widetilde{U} is strongly differentiable, as a $V^{-\ell}\text{-valued}$ function of t
 - Hahn-Banach theorem:

$$\widetilde{U}^{\,\prime}(t) \ = \ \Lambda \otimes \widetilde{U}(t)$$

• for t>0, for all s, $(1+|\lambda_\xi|)^{s/2}e^{-|\lambda_\xi|t}$ is continuous and bounded so, for t>0, $\widetilde{U}(t)$ lies in $V^\infty.$

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory The automorphic heat kernel as a H^{*}-valued

Ν

Sketch of proof

Uniqueness

Back to Physical Side

Now let
$$U(t) = \mathcal{F}^{-1} \circ \widetilde{U}$$
, i.e.
$$U(t) = \int_{\Xi} \overline{\Phi}_{\xi}(x_0) \cdot e^{-|\lambda_{\xi}| t} \cdot \Phi_{\xi} d\xi$$

By the corresponding properties for U, we can conclude

- U strongly diff. $H^{-\ell}$ -valued function
- U satisfies the heat equation
- U(t) is in fact smooth for t > 0

Amy DeCelles

Introduction

Automorphi Case

Global Automorphic Sobolev Theory

automorphic heat kernel as a H^s-valued

Sketch of proof

Uniqueness

Spectral transform of an automorphic heat kernel satisfies

$$\frac{d}{dt}Y = \Lambda \otimes Y$$

where Y is a $V^{-\ell}\text{-valued}$ function of t.

Uniqueness

Amy DeCelles

Introduction

Automorphi Case

Global Automorphic Sobolev Theory The automorphic heat kernel as a H*-valued

Sketch of proof

Uniqueness

Spectral transform of an automorphic heat kernel satisfies

$$\frac{d}{dt}Y = \Lambda \otimes Y$$

Uniqueness

where Y is a $V^{-\ell}$ -valued function of t.

Ansatz: general solution is $v \otimes \mathcal{E}$, where

- ν is a function in $V^{-\ell},$ not depending on t, and
- \mathcal{E} is the (function-on- Ξ)-valued function of t given by

$$\mathcal{E}(t): \xi \mapsto e^{\lambda_{\xi} t}$$

Then \widetilde{U} would be the unique solution satisfying the initial condition. Apply inverse spectral transform: uniqueness of automorphic heat kernel.

Amy DeCelles

Introduction

Automorphic Case

Global Automorphic Sobolev Theory The automorphic heat kernel as a H^{*}-valued function of t

Sketch of proof

Uniqueness

Thank you for your attention!