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Overview

Applications of automorphic differential equations:

• subconvexity (growth of ζ/L-functions on critical line)

• lattice point counting in symmetric spaces (analogue of
Gauss circle problem)

• vanishing of ζ/L-functions on critical line

Underlying framework:

• Automorphic spectral expansions

• Global automorphic Sobolev theory (to make heuristic
“engineering math” arguments into rigorous ones with
clear conclusions)
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The Riemann Zeta Function

RH: Nontrivial zeros of ζ (probably) all lie on 1
2 + iR.

Implied growth of ζ on 1
2 + iR:

|ζ(1
2 + it)| �ε (1 + |t|)ε ∀ ε > 0 (LH)

Equivalent to optimal error term in PNT.

Convexity (“trivial”) bound:

|ζ(1
2 + it)| �ε (1 + |t|)

1
4+ε ∀ ε > 0

Subconvexity: Reduce 1
4 in exponent. E.g. Weyl, 1921: 1

6 .
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Other ζ/L-functions

Analogous conjectures and results for other ζ/L-functions.

NB: Interesting applications follow already from subconvexity.

• Cogdell 2003 (with Piatetski-Shapiro, Sarnak):
representability of algebraic integer as sum of three
squares in a ring of algebraic integers

• Watson 2002: QUE for arithmetic surfaces would follow
from subconvex bounds for certain degree eight
L-functions

Moreover, for some automorphic L-functions, even the “trivial”
convexity bound has not been proven
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Poincaré Series for Subconvexity

Diaconu-Garrett, 2010: subconvexity for GL2 automorphic
L-function over arbitrary number field in t-aspect

Poincaré series whose kernel is neither smooth nor compactly
supported

• solution to differential equation (∆− λ)u = θH on
symmetric space G/K

• θH is distribution: integrate along subgroup H

Poincaré series itself is solution to corresponding automorphic
differential equation

• heuristically immediate automorphic spectral expansion
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On Higher Rank Groups

D. 2016: Constructing Poincaré series

• Explicit formulas when G is a complex semi-simple Lie
group

• Harmonic analysis on symmetric spaces

• Global zonal spherical Sobolev spaces

• Poincaré series produce identities involving moments of
GLn(C)×GLn(C) Rankin-Selberg L-functions
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Lattice Point Counting
Classical Gauss Circle Problem:

• Elementary packing arguments:

N(T) = #{ξ ∈ Z2 : |ξ| 6 T } = π · T2 + O(T)

• Optimal error term conjectured to be O(T1/2+ε).

Asymptotic in non-Euclidean spaces?

• Hyperbolic spaces: subtler than packing arguments

• Affine symmetric spaces: ergodic methods

Symmetric space G/K, G complex semisimple Lie group

• Poincaré series from automorphic differential equation

(∆− λ)u = δ

• exact formula relating number of lattice points with
automorphic spectrum (D. 2012)
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RH and Eigenvalues

Hilbert-Polya: To prove RH, construct a self-adjoint operator
on a Hilbert space with eigenvalues λs = s(s− 1) parametrized
by zeros of the Riemann zeta function.

Intriguing investigations, 1977-1983:

• Haas, 1977: List of parameters for (purported) eigenvalues
of ∆ on the modular curve SL2(Z)\H.

• Stark noticed zeros of zeta.

• Hejhal, Colin de Verdière, 1981-1983: reproduce? repair?

Bombieri-Garrett, preprint, Designed Pseudo-Laplacians
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Possible Repair

Haas’ error: overlooking non-smoothness of (purported)
eigenfunctions at corner ω of fundamental domain

Repair: construct operator (pseudo-Laplacian) “∆̃ω” that
overlooks this non-smoothness?

• Haas’ spurious eigenvalues of ∆ would be genuine
eigenvalues of ∆̃ω ?

• Would have self-adjoint operator on a Hilbert space some
of whose eigenvalues are parametrized by zeros of zeta on
the critical line?

• Would want to show that all (or at least many) of the
zeros of ζ are accounted for in this way . . .
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Reason for Hope

In Colin de Verdière’s meromorphic continuation of Eisenstein
series:

• Certain truncated Eisenstein series (not smooth!) are
genuine eigenfunctions for a pseudo-Laplacian ∆̃a.

• For u in the domain of ∆̃a,

(∆̃a − λ)u = 0 ⇐⇒ (∆− λ)u = (const.)ηa

where ηa is the distribution that evaluates the constant
term at height a.

Imitate this to construct self-adjoint ∆̃ω such that

(∆̃ω − λ)u = 0
(naive hope)⇐⇒ (∆− λ)u = (const.) δω

where δω is the automorphic Dirac delta at ω = eπi/3 ?
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Imitating CdV

With

• ∆ω, restriction of ∆ to C∞
c (X) ∩ ker(δω),

• ∆̃ω, Friedrichs extension of ∆ω (canonical, self-adjoint),

Then, indeed, for u in the domain of ∆̃ω,

(∆̃ω − λ)u = 0 ⇐⇒ (∆− λ)u = (const.) δω

And, using global automorphic Sobolev theory, can construct
solutions to distributional differential equation using
automorphic spectral expansions.
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Failure of Naive Repair

Again, we have: for u in the domain of ∆̃ω,

(∆̃ω − λ)u = 0 ⇐⇒ (∆− λ)u = (const.) δω

However, global automorphic Sobolev theory also shows that

• No solution will lie in the domain of ∆̃ω.

• Discrete spectrum of ∆̃ω is empty.

CdV’s suggestion: replace δ by θ, a projection of δ to the
non-cuspidal part of the automorphic spectrum.

Bombieri-Garrett prove: existence of ∆̃θ-eigenvalue
λw = w(w− 1) with Re(w) = 1

2 does imply vanishing of zeta
function at w.
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Constructing the Pseudo-Laplacian

Let Θ be a compactly supported distribution on X = SL2(Z)\H
and θ the projection to the non-cuspidal part of the spectrum.

Restrict ∆ to L2
nc(X) ∩ C∞

c (X) ∩ ker(θ), and let ∆̃θ be its
Friedrichs extension.

Then, for u in the domain of ∆̃θ,

(∆̃θ − λw)u = 0 ⇐⇒ (∆− λw)u = (const) · θ
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Vanishing of Periods

Theorem (Bombieri-Garrett)

Let θ and ∆̃θ be as above. Suppose θ lies in H−1(X) and θ is
real, in the sense that θ(ϕ) = θ(ϕ) for all ϕ ∈ C∞

c (X). Then
the compact period θEw vanishes when λw = w(w− 1) is an
eigenvalue for ∆̃θ with Re(w) = 1

2 .

Note
Hardy-Littlewood 1918 ⇒ θ = Projncδω satisfies the
hypotheses. Here: θEs = Es(ω) = (

√
3/2)sζQ(ω)(s)/ζ(2s).

Corollary

Let θ = Projncδω. If λw = w(w− 1) is an eigenvalue for ∆̃θ
with Re(w) = 1

2 , then ζQ(ω)(w) = 0.
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How Many Zeros?

With λw = w(w− 1) an eigenvalue for ∆̃θ,

Have shown:

• w’s on the critical line ⊂ zeros of zeta function

Hope: w’s account for

• all zeros of zeta? (No: Epstein zetas.)

• many zeros of zeta? (Not clear.)

If Montgomery’s Pair Correlation Conjecture is true,

• at most a positive fraction of zeros of zeta,

• because they interlace with zeros of
cP(Es)(ia) = a

s + csa
1−s on the critical line.
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GL3 Automorphic L-functions

• GL3 automorphic L-functions arise as compact periods of
GL3 cuspidal data Eisenstein series. (Lapid et. al.)

• Theorem (D.) Vanishing of compact periods of GL3

cuspidal data Eisenstein series at w-values on the critical
line corresponding to eigenvalues (if any) of suitable
pseudo-Laplacian.

• Theorem (D.) Interlacing with discrete spectrum of
pseudo-Laplacian on Lax-Phillips space.

• H−1-condition on period distribution: condition on the
second moment of period.

• Given suitable moment bound, prove vanishing of GL3

automorphic L-functions?



Applications
of Modern

Analysis

Amy DeCelles

Overview

Subconvexity

Lattice Point
Counting

Eigenvalues of
Pseudo-
Laplacians

A Provocative
Mistake

Bombieri-Garrett
Theorems

Further
Applications

Periods of Totally Degenerate
Eisenstein Series

For a degree n extension ` of a number field k, let H be the
copy of `× in GLn(k). Then

ΘH(E
deg
s ) =

∫
ZAHk\HA

Edeg
s (h)dh =

ξ`(s)

ξk(ns)

where Edeg
s is a totally degenerate GLn Eisenstein series.

Prove vanishing of ξ` on the critical line?

Problem: Totally degenerate Eisenstein series do not occur in
automorphic spectral expansion.

Tension: The easier it is to prove that a period has an Euler
product, the less likely it is that the Eisenstein series occurs in
the automorphic spectral expansion.
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Thank you for your attention!
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