Amy DeCelles

Overview

Subconvexity

Lattice Poin Counting

Eigenvalues o Pseudo-Laplacians Applications of Modern Analysis to Automorphic Forms and Analytic Number Theory

Amy DeCelles

University of St. Thomas, Minnesota

October 28, 2016

Overview

Applications of Modern Analysis

Amy DeCelles

Overview

Subconvexity

- Lattice Point Counting
- Eigenvalues of Pseudo-Laplacians

Applications of automorphic differential equations:

- subconvexity (growth of ζ/L -functions on critical line)
- lattice point counting in symmetric spaces (analogue of Gauss circle problem)
- vanishing of ζ/L -functions on critical line

Underlying framework:

- Automorphic spectral expansions
- Global automorphic Sobolev theory (to make heuristic "engineering math" arguments into rigorous ones with clear conclusions)

Amy DeCelles

Overview

Subconvexity

Context Poincaré Series

Lattice Point Counting

Eigenvalues of Pseudo-Laplacians

The Riemann Zeta Function

RH: Nontrivial zeros of ζ (probably) all lie on $\frac{1}{2} + i\mathbb{R}$. Implied growth of ζ on $\frac{1}{2} + i\mathbb{R}$: $|\zeta(\frac{1}{2} + it)| \ll_{\epsilon} (1 + |t|)^{\epsilon} \quad \forall \epsilon > 0$ (LH) Equivalent to optimal error term in PNT.

Convexity ("trivial") bound:

 $|\zeta(\tfrac{1}{2}+it)| \ll_{\epsilon} (1+|t|)^{\frac{1}{4}+\epsilon} \ \forall \ \epsilon > 0$

Subconvexity: Reduce $\frac{1}{4}$ in exponent. E.g. Weyl, 1921: $\frac{1}{6}$.

Amy DeCelles

Overview

Subconvexity

Context Poincaré Serie

Lattice Poin[.] Counting

Eigenvalues of Pseudo-Laplacians Analogous conjectures and results for other ζ /L-functions.

NB: Interesting applications follow already from subconvexity.

Other ζ /L-functions

- Cogdell 2003 (with Piatetski-Shapiro, Sarnak): representability of algebraic integer as sum of three squares in a ring of algebraic integers
- Watson 2002: QUE for arithmetic surfaces would follow from subconvex bounds for certain degree eight L-functions

Moreover, for some automorphic L-functions, even the "trivial" convexity bound has not been proven

Amy DeCelles

Overview

Subconvexity Context Poincaré Series

Lattice Point Counting

Eigenvalues of Pseudo-Laplacians

Poincaré Series for Subconvexity

Diaconu-Garrett, 2010: subconvexity for GL_2 automorphic L-function over arbitrary number field in t-aspect

Poincaré series whose kernel is neither smooth nor compactly supported

- solution to differential equation $(\Delta-\lambda)\, u\,=\, \theta_H$ on symmetric space G/K
- + θ_H is distribution: integrate along subgroup H

Poincaré series itself is solution to corresponding automorphic differential equation

• heuristically immediate automorphic spectral expansion

Amy DeCelles

Overview

Subconvexity Context Poincaré Series

Lattice Poin Counting

Eigenvalues of Pseudo-Laplacians

On Higher Rank Groups

- D. 2016: Constructing Poincaré series
 - Explicit formulas when G is a complex semi-simple Lie group
 - Harmonic analysis on symmetric spaces
 - Global zonal spherical Sobolev spaces
 - Poincaré series produce identities involving moments of $GL_n(\mathbb{C})\times GL_n(\mathbb{C})$ Rankin-Selberg L-functions

Amy DeCelles

Overview

Subconvexity

Lattice Point Counting

Eigenvalues of Pseudo-Laplacians

Lattice Point Counting

Classical Gauss Circle Problem:

• Elementary packing arguments:

 $N(T) \hspace{.1in} = \hspace{.1in} \#\{\xi \in \mathbb{Z}^2 : |\xi| \leqslant T\} \hspace{.1in} = \hspace{.1in} \pi \cdot T^2 \hspace{.1in} + \hspace{.1in} O(T)$

- Optimal error term conjectured to be $O(T^{1/2+\epsilon})$. Asymptotic in non-Euclidean spaces?
 - Hyperbolic spaces: subtler than packing arguments
 - Affine symmetric spaces: ergodic methods

Symmetric space G/K, G complex semisimple Lie group

• Poincaré series from automorphic differential equation

$$(\Delta - \lambda) \mathfrak{u} = \delta$$

• exact formula relating number of lattice points with automorphic spectrum (D. 2012)

Amy DeCelles

Overview

Subconvexity

Lattice Point Counting

Eigenvalues o Pseudo-Laplacians

A Provocative Mistake

Bombieri-Garrett Theorems

Further Applications

RH and Eigenvalues

Hilbert-Polya: To prove RH, construct a self-adjoint operator on a Hilbert space with eigenvalues $\lambda_s = s(s-1)$ parametrized by zeros of the Riemann zeta function.

Intriguing investigations, 1977-1983:

- Haas, 1977: List of parameters for (purported) eigenvalues of Δ on the modular curve SL₂(ℤ)\𝔅.
- Stark noticed zeros of zeta.
- Hejhal, Colin de Verdière, 1981-1983: reproduce? repair?

Bombieri-Garrett, preprint, Designed Pseudo-Laplacians

Amy DeCelles

Overview

Subconvexity

Lattice Poin Counting

Eigenvalues o Pseudo-Laplacians

A Provocative Mistake

Bombieri-Garrett Theorems

Further Applications Haas' error: overlooking non-smoothness of (purported) eigenfunctions at corner ω of fundamental domain

Repair: construct operator (pseudo-Laplacian) " $\widetilde{\Delta}_{\omega}$ " that overlooks this non-smoothness?

- Haas' spurious eigenvalues of Δ would be genuine eigenvalues of $\widetilde{\Delta}_{\varpi}$?
- Would have self-adjoint operator on a Hilbert space some of whose eigenvalues are parametrized by zeros of zeta on the critical line?
- Would want to show that all (or at least many) of the zeros of ζ are accounted for in this way \ldots

Possible Repair

Amy DeCelles

Overview

Subconvexity

Lattice Poin Counting

Eigenvalues o Pseudo-Laplacians

A Provocative Mistake

Bombieri-Garrett Theorems

Further Applications In Colin de Verdière's meromorphic continuation of Eisenstein series:

- Certain truncated Eisenstein series (not smooth!) are genuine eigenfunctions for a pseudo-Laplacian $\tilde{\Delta}_{a}$.
- For \mathfrak{u} in the domain of $\widetilde{\Delta}_{\mathfrak{a}}$,

 $(\widetilde{\Delta}_{\mathfrak{a}} - \lambda)\mathfrak{u} = 0 \quad \Longleftrightarrow \quad (\Delta - \lambda)\mathfrak{u} = (\text{const.})\eta_{\mathfrak{a}}$

where η_{α} is the distribution that evaluates the constant term at height $\alpha.$

Imitate this to construct self-adjoint $\widetilde{\Delta}_{\varpi}$ such that

 $(\widetilde{\Delta}_{\omega} - \lambda) \mathfrak{u} \; = \; 0 \quad \stackrel{(\text{naive hope})}{\longleftrightarrow} \quad (\Delta - \lambda) \mathfrak{u} \; = \; (\text{const.}) \, \delta_{\omega}$

where δ_{ω} is the automorphic Dirac delta at $\omega = e^{\pi i/3}$?

Reason for Hope

Imitating CdV

Amy DeCelles

Applications of Modern

Analysis

Lattice Poin Counting

Eigenvalues o Pseudo-Laplacians

A Provocative Mistake

Bombieri-Garrett Theorems

Further Applications

With

- Δ_{ω} , restriction of Δ to $C_{c}^{\infty}(X) \cap \ker(\delta_{\omega})$,
- Δ_{ω} , Friedrichs extension of Δ_{ω} (canonical, self-adjoint),

Then, indeed, for \mathfrak{u} in the domain of $\widetilde{\Delta}_{\omega}$,

$$(\widetilde{\Delta}_{\omega} - \lambda)\mathfrak{u} = 0 \quad \Longleftrightarrow \quad (\Delta - \lambda)\mathfrak{u} = (\text{const.})\,\delta_{\omega}$$

And, using global automorphic Sobolev theory, can construct solutions to distributional differential equation using automorphic spectral expansions.

Amy DeCelles

Overview

Subconvexity

Lattice Point Counting

Eigenvalues o Pseudo-Laplacians

A Provocative Mistake

Bombieri-Garrett Theorems

Further Applications

Failure of Naive Repair

Again, we have: for \mathfrak{u} in the domain of $\widetilde{\Delta}_{\omega}$,

$$(\widetilde{\Delta}_{\omega} - \lambda)\mathfrak{u} = 0 \quad \Longleftrightarrow \quad (\Delta - \lambda)\mathfrak{u} = (\text{const.})\,\delta_{\omega}$$

However, global automorphic Sobolev theory also shows that • No solution will lie in the domain of $\widetilde{\Delta}_{\omega}$. • Discrete spectrum of $\widetilde{\Delta}_{\omega}$ is empty.

CdV's suggestion: replace δ by θ , a projection of δ to the non-cuspidal part of the automorphic spectrum.

Bombieri-Garrett prove: existence of $\widetilde{\Delta}_{\theta}$ -eigenvalue $\lambda_w = w(w-1)$ with $\operatorname{Re}(w) = \frac{1}{2}$ does imply vanishing of zeta function at w.

Amy DeCelles

Overview

Subconvexity

Lattice Poin Counting

Eigenvalues o Pseudo-Laplacians

A Provocative Mistake

Bombieri-Garrett Theorems

Further Applications

Constructing the Pseudo-Laplacian

Let Θ be a compactly supported distribution on $X = SL_2(\mathbb{Z}) \setminus \mathfrak{H}$ and θ the projection to the non-cuspidal part of the spectrum.

Restrict Δ to $L^2_{nc}(X) \cap C^\infty_c(X) \cap \ker(\theta)$, and let $\widetilde{\Delta}_{\theta}$ be its Friedrichs extension.

Then, for \mathfrak{u} in the domain of $\widetilde{\Delta}_{\theta}$,

 $(\widetilde{\Delta}_{\theta} - \lambda_w) \mathfrak{u} = 0 \qquad \Longleftrightarrow \qquad (\Delta - \lambda_w) \mathfrak{u} = (\mathsf{const}) \cdot \theta$

Amy DeCelles

Overview

Subconvexity

Lattice Point Counting

Eigenvalues of Pseudo-Laplacians

A Provocative Mistake

Bombieri-Garrett Theorems

Further Applications

Theorem (Bombieri-Garrett)

Let θ and $\widetilde{\Delta}_{\theta}$ be as above. Suppose θ lies in $H^{-1}(X)$ and θ is real, in the sense that $\theta(\overline{\phi}) = \overline{\theta(\phi)}$ for all $\phi \in C_c^{\infty}(X)$. Then the compact period θE_w vanishes when $\lambda_w = w(w-1)$ is an eigenvalue for $\widetilde{\Delta}_{\theta}$ with $\text{Re}(w) = \frac{1}{2}$.

Vanishing of Periods

Note

Hardy-Littlewood 1918 $\Rightarrow \theta = \mathsf{Proj}_{\mathsf{nc}} \delta_{\omega}$ satisfies the hypotheses. Here: $\theta \mathsf{E}_s = \mathsf{E}_s(\omega) = (\sqrt{3}/2)^s \zeta_{\mathbb{Q}(\omega)}(s)/\zeta(2s)$.

Corollary

Let $\theta = \operatorname{Proj}_{nc} \delta_{\omega}$. If $\lambda_w = w(w-1)$ is an eigenvalue for $\widetilde{\Delta}_{\theta}$ with $\operatorname{Re}(w) = \frac{1}{2}$, then $\zeta_{\mathbb{Q}(\omega)}(w) = 0$.

Amy DeCelles

Overview

Subconvexity

Lattice Point Counting

Eigenvalues o Pseudo-Laplacians

A Provocative Mistake

Bombieri-Garrett Theorems

Further Applications

With $\lambda_w = w(w-1)$ an eigenvalue for $\widetilde{\Delta}_{\theta}$,

Have shown:

• w's on the critical line \subset zeros of zeta function Hope: w's account for

- all zeros of zeta? (No: Epstein zetas.)
- many zeros of zeta? (Not clear.)

If Montgomery's Pair Correlation Conjecture is true,

- at most a **positive fraction** of zeros of zeta,
- because they interlace with zeros of $c_P(\mathsf{E}_s)(\mathfrak{i} \mathfrak{a})=\mathfrak{a}^s+c_s\mathfrak{a}^{1-s} \text{ on the critical line.}$

How Many Zeros?

Amy DeCelles

Overview

Subconvexity

Lattice Point Counting

Eigenvalues of Pseudo-Laplacians

A Provocative Mistake

Theorems

Further Applications

GL₃ Automorphic L-functions

- GL₃ automorphic L-functions arise as compact periods of GL₃ cuspidal data Eisenstein series. (Lapid et. al.)
- Theorem (D.) Vanishing of compact periods of GL₃ cuspidal data Eisenstein series at *w*-values on the critical line corresponding to eigenvalues (if any) of suitable pseudo-Laplacian.
- Theorem (D.) Interlacing with discrete spectrum of pseudo-Laplacian on Lax-Phillips space.
- H⁻¹-condition on period distribution: condition on the second moment of period.
- Given suitable moment bound, prove vanishing of GL_3 automorphic L-functions?

Amy DeCelles

Overview

Subconvexity

Lattice Point Counting

Eigenvalues o Pseudo-Laplacians

A Provocative Mistake

Theorems

Further Applications

Periods of Totally Degenerate Eisenstein Series

For a degree n extension ℓ of a number field k, let H be the copy of ℓ^\times in $GL_n(k).$ Then

$$\Theta_{H}(E_{s}^{deg}) = \int_{Z_{\mathbb{A}}H_{k} \setminus H_{\mathbb{A}}} E_{s}^{deg}(h) \, dh = \frac{\xi_{\ell}(s)}{\xi_{k}(ns)}$$

where E_s^{deg} is a totally degenerate GL_n Eisenstein series.

Prove vanishing of ξ_{ℓ} on the critical line?

Problem: Totally degenerate Eisenstein series do not occur in automorphic spectral expansion.

Tension: The easier it is to prove that a period has an Euler product, the less likely it is that the Eisenstein series occurs in the automorphic spectral expansion.

Amy DeCelles

Overview

Subconvexity

Lattice Point Counting

Eigenvalues of Pseudo-Laplacians

A Provocative Mistake

Bombieri-Garrett Theorems

Further Applications

Thank you for your attention!