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Solutions of Automorphic Differential Equations

• Poincaré series of Good, Diaconu-Goldfeld, Diaconu-Garrett
• subconvexity of GL2 automorphic L-functions in the t aspect

over an arbitrary number field

• higher rank: Diaconu-Garrett moment identities

• lattice point counting in symmetric spaces G/K where G is
complex (D)

• eigenfunctions for pseduo-differential operators
. . . meromorphic continuation of Eisenstein series (CdV)
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Fundamental Solutions

Differential operator D. Fundamental solution for D is solution to

Du = δ (δ = Dirac delta)

Here we are interested in fundamental solutions for (∆− λ) on
Γ\G/K where

• G is a reductive or semi-simple Lie group, K ⊂ G maximal
compact, Γ ⊂ G discrete

• ∆ is the Laplacian, the image of Casimir for g

• λ is a complex parameter

• δ is Dirac delta at basepoint
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Engineering Math

Spectral expansions immediate (heuristically).

Example: Fourier expansions(
d2

dx2
− 4π2w2

)
uw = δ

F

((
d2

dx2
− 4π2w2

)
uw

)
= F(δ)

−4π2(ξ2 +w2)Fuw = 1

Thus Fuw = −1/(4π2(ξ2 +w2)), and

uw =

∫∞
−∞

−e2πixξ dξ

4π2(ξ2 +w2)
=

−e2πw|x|

4πw
(Re(w) > 0)
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Similarly . . .

Simplest automorphic case: SL2(Z)\H

uw =
∑
f

f̄(z0) f

λf − λw
+
Φ̄0(z0)Φ0

λ0 − λw

+
1

4πi

∫∞
−∞

E 1
2−it

(z0)E 1
2+it

dt

λs − λw
(Re(w) > 1

2)

where z0 is the base point in SL2(Z)\H, f ranges over an
orthonormal basis of cusp forms, Φ0 is the constant automorphic
form, s = 1

2 + it, λw = w(w− 1), and λf, λ0, and λs are the
eigenvalues of f, Φ0, and Es, respectively.

Convergence?? Global automorphic Sobolev theory! (D)
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The Geometric Side

Poincaré series: wind-up corresponding fundamental solution on
free space G/K.

Péw(g) =
∑
γ∈Γ

ufree
w (γg)

Then Péw is an automorphic fundamental solution.

Perhaps more common to start with Péw, find its spectral
expansion, hoping for meromorphic continuation in w.

However: sometimes the automorphic fundamental solution
exhibits branching!
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To be more precise . . .

(∆− λw)
ν uw = δzo (ν ∈ N)

Global automorphic Sobolev theory ensures:

• solution uw exists and is unique in global automorphic
Sobolev spaces

• automorphic spectral expansion converges in Sobolev topology
for Re(w)� 1

• ν� 1 ensures that the spectral expansion converges
uniformly pointwise (or in any Ck-topology that we wish)

However:

• meromorphic continuations along different w-paths may differ
by a term of moderate growth (branching)

• the resulting function may lie outside of global automorphic
Sobolev spaces
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Hilbert-Maass Fundamental Solutions

Let k be a totally real number field of degree n > 1 over Q, and
let o be its ring of integers.

For Re(w) > 1
2 , there is a unique solution uw to the automorphic

differential equation (∆− λw)uw = δ:

uw =
∑
F

F(zo) · F
λF − λw

+
1

(λ1 − λw)〈1, 1〉

+
∑
χ

1

4πi

∫
1
2+iR

E1−s,χ(zo) · Es,χ

λs,χ − λw
ds

For each nontrivial unramified grossencharacter χ, the
corresponding integral Iχ has two branch points on the critical line.
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Fix a grossencharacter χ. Let σ1, . . .σn be the archimedean places
of k. Take real parameters tχ = (t1, . . . , tn) with
t1 + · · ·+ tn = 0 such that

χ(α) = σ(α)it1 . . .σn(α)
itn

where α ∈ (k⊗Q R)×, and let

‖tχ‖2 = 1
n (|t1|

2 + . . . + |tn|
2)

Writing the eigenvalue in terms of s and tχ,

λs,χ =
1

n

(
(s+ it1)(s+ it1 − 1) + . . . + (s+ itn)(s+ itn− 1)

)
Thus the integrand has poles at

s = 1
2 ±

√
(w− 1

2)
2 + ‖tχ‖2
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Figure: Pathwise meromorphic continuation along these two paths in the
w-plane yields functions that differ by a term of moderate growth. The
dotted vertical line is the critical line Re(w) = 1

2 . The dashed horizontal
lines are Im(w) = ±‖tχ‖.
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Theorem
Let γ1 and γ2 be w-paths in C, each originating at a point w0 in
the right half plane Re(w) > 1

2 , crossing the critical line once, and
terminating at a point w ′0 in the left half plane Re(w) < 1

2 , with
γ1 crossing the critical line at a height greater than ‖tχ‖ and γ2

crossing at a height less than ‖tχ‖. Then pathwise meromorphic
continuations of Iχ(w) along the paths γ1 and γ2 differ by a term
of moderate growth, namely by

4πi · E1−s(χ,w),χ(zo) · Es(χ,w),χ

1 − 2s(χ,w)

where, s(χ,w) is defined as follows. For fixed w in Re(s) > 1
2 ,

s(χ,w) is the pole of the integrand of Iχ(w) in Re(s) > 1
2 . As w

crosses the critical line, s(χ,w) is defined by analytic continuation.
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We sketch the proof.

Regularize:

Iχ(w) =

∫
1
2+iR

E1−s,χ(zo)Es,χ − E1−s(χ,w),χ(zo)Es(χ,w),χ

λs,χ − λw
ds

+ E1−s(χ,w),χ(zo)Es(χ,w),χ ·
∫

1
2+iR

ds

λs,χ − λw
(Re(w) > 1

2)

By design the integrand of the first integral on the right side is
continuous. The second integral can be evaluated by residues:

2πi× Res
s = 1−s(χ,w)

1

(s− s(χ,w))(s− (1 − s(χ,w))
=

2πi

1 − 2s(χ,w)
(Re(w) > 1

2)
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Consider χ = 1. Then s(χ,w) = s(1,w) = w, and

I1(w) =

∫
1
2+iR

E1−s,1(zo)Es,1 − E1−w,1(zo)Ew,1

λs,1 − λw
ds

+ E1−w,1(zo)Ew,1 ·
2πi

1 − 2w
(Re(w) > 1

2)

Move w across the critical line and reverse the regularization:

I1(w) =

∫
1
2+iR

E1−s,1(zo)Es,1

λs,1 − λw
ds

− E1−w,1(zo)Ew,1 ×( ∫
1
2+iR

1

λs,1 − λw
ds −

2πi

1 − 2w

)
(Re(w) < 1

2)

Since s = w is now the pole to the left of the critical line, residue
calculus yields∫

1
2+iR

ds

λs,χ − λw
= 2πi× Res

s =w

1

(s−w)(s− (1 −w))
=

2πi

2w− 1
(Re(w) < 1

2)
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Thus the integral corresponding to χ = 1 is

I1(w) =

∫
1
2+iR

E1−s,1(zo)Es,1

λs,1 − λw
ds (Re(w) > 1

2)

I1(w) =

∫
1
2+iR

E1−s,1(zo)Es,1

λs,1 − λw
ds

+ E1−w,1(zo)Ew,1 ·
4πi

1 − 2w
(Re(w) < 1

2)

Thus we see that the pathwise meromorphic continuation has an
additional term when w is left of the critical line.
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Now: χ nontrivial.

• If w crosses the critical line with imaginary part greater in
magnitude than ‖tχ‖, the radicand, (w− 1

2)
2 + ‖tχ‖2, in the

expression for s(χ,w) moves around the branch point of the
square root, the origin. As above, get additional term.

.

• If w crosses the critical line with imaginary part within a
distance of ‖tχ‖ of the real axis, the radicand,
(w− 1

2)
2 + ‖tχ‖2, stays strictly in the right half plane and

thus does not travel around the origin. No additional term.

Thus branching is evident: pathwise meromorphic continuations
of Iχ(w) depend non-trivially on the path, the branch points being
w = 1

2 ± i ‖tχ‖.
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GL3 Automorphic Fundamental Solution

Let G = SL3(R), K = SO(3) and Γ = SL3(Z).

uw =
∑

cfm F

F(x0)

(λF − λw)ν
· F +

1

〈1, 1〉(λ1 − λw)ν

+
1

|W|

∫
ρ+ia∗

Eχ̄µ(x0)

(λχ − λw)ν
· Eχµ dµ

+
∑

GL2 cfms f

∫
1
2+iR

Ef̄,1−s(x0)

(λf,s − λw)ν
· Ef,s ds

For each GL2 cusp form f in the chosen orthonormal basis, the
corresponding integral has two branch points on the critical line.
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