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Another approach for determining the spherical functions for GL3. Characterize spherical function as
left average over K of a spherical vector in principal series. Use Bruhat decomposition to write as an
integral over N (affine!) This is very rough. At several points I relied on Helgason’s 1984 book.

0. Context

Previously, we had characterized the spherical function as the (unique) bi-K-invariant eigenfunction for
z (≈ the algebra of left G-invariant differential operators on G/K, for classical groups at least)
satisfying a normalization condition ϕ(1) = 1 and perhaps also a growth condition (tempered?) To
determine the spherical functions on SL2(C), we can (by hand) compute the Casimir operator in radial
coordinates and find a (constant coefficient!) DE

(Ω− λ)
ϕ

sinh r
= 0 ⇐⇒ ϕ′′ + ((const)− λ)× ϕ = 0

With a little work, we get

ϕs =
sinh((2s− 1)r)

(2s− 1) sinh r

For SL3(C), spherical functions are still be elementary, but imitating the procedure that worked for
SL2(C) turns out to be troublesome. Although we can compute Casimir on bi-K-invariant functions
and get a constant coefficient PDE, this PDE is not sufficient to determine the spherical function,
because we need to use the action of the other generator of the center of the universal enveloping
algebra, which is a differential operator of order four, and which does not have a tractable explicit
description.

As an alternative, we characterize the spherical function as the average of left K-translates of the
spherical vector in the principal series,

ϕs(g) =

∫
K

fs(kg) dg fs ∈ Is = IndGP (χs)

First we treat the case of SL2(R) as the very simplest example (though the integral is
non-elementary–we’ll get a Bessel function) then SL2(C), using a formula for the Haar measure on
SU(2) lifted from Helgason, and finally the case of SL3(C). Along the way we’ll discuss computation of
the Haar measure of SL3 in Iwasawa coordinates, the Bruhat decomposition of GL3, and the change of
measure N̄ → K/M .

1. The Cases SL2(R) and SL2(C)

Consider the case of SL2(R) first. The integral we want to compute is∫
K

fs(kg) dk =

∫
SO(2)

fs(kg) dk =

∫ 2π

0

fs(kθg) dθ

We use the facts that fs is right K-invariant and left P -equivariant by χs. The integral is left and right
K-invariant, so we may assume that g ∈ A+.

kg = kar =

(
cos θ sin θ
− sin θ cos θ

)(
er/2

e−r/2

)
=

(
er/2 cos θ er/2 sin θ
−er/2 sin θ e−r/2 cos θ

)
We can right multiply by a suitable element of K to get the argument in P .

kark
′ =

(
∗ ∗
0
√

(−e−r sin θ)2 + (er cos θ)2

)
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So the integral becomes ∫ 2π

0

((−er sin θ)2 + (e−r cos θ)2)−s/2 dθ

This integral is non-elementary: a hypergeometric function. (good)

We might try doing the same thing for SL2(C) and SU(2). In particular, we’d want to right-multiply
an arbitrary kar by some k′ to get something in P , use the left P -equivariance of fs, and integrate over
SU(2). However, the Haar measure on SU(2) is not as simple as the Haar measure on SO(2) ≈ S1, so
this is not as trivial.

For the present discussion, we will write U = SU(2) (instead of K) since we will want to use K to refer
to a subgroup of SU(2). We write

u ∈ SU(2) is u =

(
α β
−β̄ ᾱ

)
In Cartan coordinates,

u = kθatkφ where kθ =

(
e(i/2)θ

e−(i/2)θ

)
, at =

(
cos(t/2) i sin(t/2)
i sin(t/2) cos(t/2)

)
The Haar measure of SU(2) in Cartan coordinates is given by∫

SU(2)

f(u) du =
1

16π2

∫ π

0

sin t dt

∫ 2π

0

dθ

∫ 2π

−2π

f(kθ, atkφ) dφ

(I found this in Hegason, exercise 11 of Ch I.)

The spherical function for SL2(C) is given by the integral∫
SU(2)

fs(ug) du =

∫
SU(2)

fs(uar) du

We would like the argument of fs to be in P .

For an arbitrary g ∈ G, we can right-multiply by an element u′ of SU(2) to get something in P .

gu′ =

(
a b
c d

)(
α β
−β̄ ᾱ

)
=

(
∗ ∗
0 ∗

)
A little computation shows that we must have(

β̄/c ∗
0 c/β̄

)
If we pick β such that

|β|2 =
|c|2

|c|2 + |d|2

then
χs(gu

′) = |β̄/c|4s = (|c|2 + |d|2)2s

For g = uar, u ∈ SU(2), ar in the standard maximal torus of G,

uar =

(
α β
−β̄ ᾱ

)(
er/2

e−r/2

)
=

(
αer/2 βe−r/2

−β̄er/2 ᾱe−r/2

)
Right multiplying by a suitable u′ ∈ SU(2) and applying χs,

χs(uaru
′) = (|β|2er + |α|2e−r)2s
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Putting u into Cartan coordinates, this is

χs(uaru
′) = (sin2(t/2)er + cos2(t/2)e−r)2s

So the integral is∫
SU(2)

fs(uar) du =

∫
SU(2)

fs(uaru
′) du

=

∫
SU(2)

χs(uaru
′) du

=
1

16π2

∫ π

0

sin t dt

∫ 2π

0

dθ

∫ 2π

−2π

(sin2(t/2)er + cos2(t/2)e−r)2s dφ

=
1

2π

∫ π

0

(sin2(t/2)er + cos2(t/2)e−r)2s sin t dt

Evaluating the integral yields
sinh((2s+ 1)r)

22s+1π(2s+ 1) sinh r

So this is (up to some normalization issues) the same as the expression for the spherical function that
we obtained by solving the DE!

2. The case of SL3(C)

Notice, in the SL2(C) case above, integrating over K = SU(2) is not trivial. We needed to parametrize
SU(2) by three real parameters. In order to do this for SU(3) ⊂ SL3(C) we would expect nine (eight?)
real parameters! So instead of integrating over K, we will integrate over N , which is affine.
(Heuristically, passing from K to N is like removing a point from a circle, S1 ≈ SO(2), to get a line,
R ≈ N ⊂ SL2(R).)

We are trying to get the spherical function for SL3(C) by integrating (averaging on the left) the
spherical vector in the principal series over K

ϕs =

∫
K

fs(k∗) dk

Since fs is left P -equivariant, we can write this as an integral over the quotient (M ∩K)\K, where M
is the Levi component of P ∫

(M∩K)\K
fs(k̄∗) dk̄

If k = mk̄ ∈M ·
(
(M ∩K)\K

)
,∫

K

fs(ka) dk =

∫
M∩K

∫
(M∩K)\K

f(mk̄a) dk̄ dm =

∫
M∩K

χs(m) dm ·
∫

(M∩K)\K
f(k̄a) dk̄

Now M is the subgroup of diagonal matrices and K is SU(3), so M ∩K is a torus

M ∩K =

m1

m2

m3

 , |m1|2 = |m2|2 = |m3|2 = 1

So χs(m) = 1 for m ∈M ∩K, and the first integral is just the volume of M ∩K, which is some finite
constant, independent of s. So we just need to compute the second integral∫

(M∩K)\K
f(k̄a) dk̄
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This quotient is isomorphic to P\G, since

(M ∩K)\K = (P ∩K)\K ≈ P\PK ≈ P\G

The Bruhat decomposition for the minimal parabolic,

G =
⊔
w∈W

PwN

gives a decomposition of the quotient space P\G,

P\G =
⊔
w∈W

P\PwN

For w = wo, the long Weyl element,

P\PwN ≈ P\Pw−1Nw = P\PN ≈ N

This PwN , the “big cell,” is an open dense subset of G. So there is a map from N onto an open dense
subset of P\G, n̄→ P · (1 · κ(n̄)), where κ denotes the map, which extracts the K-part of an element of
G, according to the Iwasawa decomposition.

(For the next part, we follow Helgason, I.5.3, “Integral Formulas for the Bruhat Decomposition.”)

We have a map of N onto an open dense subset of G/P ≈ K/M , by n̄→ κ(n̄) ·M . We want to
determine the way the integral transforms∫

K/M

f(k) dk =

∫
N

(f ◦ κ)(n̄)ψ(n̄) dn̄

To do this we left multiply by an element x of N and compute the change of measure on the left hand
side.

We can compute the change of measure from basic manipulations with the Haar measure in Iwasawa
(KAN) coordinates. ∫

dg =

∫
δ(a) dk da dn

This measure is invariant under left translations by arbitrary elements of G, i.e.∫
f(xkan) δ(a) dk da dn =

∫
f(xg) dg =

∫
f(g) dg =

∫
f(kan) δ(a) dk da dn

If we then write xk in Iwasawa coordinates: xk = K(xk) ·A(xk) ·N(xk), we can rewrite the argument

xkan = K(xk)A(xk)N(xk) an = K(xk)A(xk) (aa−1)N(xk) an = K(xk) ·A(xk) a · (a−1N(xk)a)n

So the K-part of xkan is K(xk), the A-part is A(xk) · a, and the N -part is (a−1N(xk)a) · n.

Note. Writing K(g), A(g), and N(g) for the K-part, A-part, and N -part of g is not at all standard.
It’s a temporary notation. Helgason writes k(g) for the K-part of g, but I thought that was confusing,
since k also refers to an arbitrary element of K. It is standard to write H(g) for the loga of the A-part.
So Helgason writes eH(g) instead of A(g). For the rest of this discussion I will write

κ(g) = K-part of g and A(g) = A-part of g

Note. In particular, notice that we have shown

κ(xg) = κ(x · κ(g))

for any x, g in G.
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Since da and dn are left Haar measures on A and N , we can change variables a→ A(xk) · a and
n→ (a−1N(xk)a) · n, without a change of measure. So the integral is∫

f(xkan) δ(a) dk da dn =

∫
f(κ(xk)an) δ(a ·A(xk)−1) dk da dn

=

∫
f(κ(xk)an) δ(a) · δ(A(xk))−1 dk da dn

So we have rewritten the integral of f(xg) = f(xkan), and we are able to conclude, by the
left-invariance of dg = δ(a) dk da dn,∫

f(kan) δ(a) dk da dn =

∫
f(κ(xk)an) δ(a) · δ(A(xk))−1 dk da dn

From this we can see how an interval over K behaves under left G-translation. If F is a function on K,∫
K

F (κ(xk)) dk =

∫
K

F (κ(xk)) δ(A(xk))−1 dk

To see this just choose f to be a product, f(kan) = F (k) · F1(a) · F2(n).

Recall, we are trying to determine the change of measure ψ in∫
K/M

f(k) dk =

∫
N

(f ◦ κ)(n̄)ψ(n̄) dn̄

We perform a change of variables n̄→ xn̄, for some x ∈ N . Since k = κ(n̄), this change of variables
sends k to κ(xn̄). Recall from above that κ(xg) = κ(x · κ(g)) for any g ∈ G, so in particular for g = n̄.
So in terms of k, the change of variables is k → κ(xk).∫

K/M

f(κ(xk)) dk =

∫
N

(f ◦ κ)(xn̄)ψ(xn̄) dn̄

Looking at the interval over K, this is precisely the change of variables we discussed above.∫
K/M

f(κ(xk)) dk =

∫
K/M

f(κ(xk)) δ(A(xk))−1 dk

Now transform this integral to an integral over N . Let g(k) = f(κ(xk)) δ(A(xk))−1.∫
K/M

g(k) dk =

∫
N

(g ◦ κ)(n̄)ψ(n̄) dn̄

=

∫
N

f(κ(x · κ(n̄))) δ(A(xκ(n̄)))−1 ψ(n̄) dn̄

=

∫
N

f(κ(xn̄)) δ(A(xκ(n̄)))−1 ψ(n̄) dn̄

since κ(x · κ(n̄)) = κ(xn̄). Now putting the two back together∫
N

f(κ(xn̄)) δ(A(xκ(n̄)))−1 ψ(n̄) dn̄ =

∫
N

(f ◦ κ)(xn̄)ψ(xn̄) dn̄

and ψ(xn̄) = δ(A(xκ(n̄)))−1 ψ(n̄). Letting n̄ = 1, we see ψ(x) = δ(A(x))−1. So the change of measure is∫
K/M

f(k) dk =

∫
N

(f ◦ κ)(n̄) δ(A(n̄))−1 dn̄

Unfortunately (from the point of view of explicitly computing the spherical function) we would still
need to know how to find the A-part of an arbitrary n̄ in order to compute the integral.
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A.1 Appendix: Haar measure in Iwasawa coordinates

The aim of this section is to recap the derivation of the Haar measure in Iwasawa coordinates. (See
Helgason I.5.1) ∫

G

f(g)dg =

∫
KAN

f(kan) δ(a) dk da dn where δ(a) = e2ρ log a

Since K ×A×N → KAN is a diffeomorphism we know that there is a function D such that∫
f(g) dg =

∫
f(kan) d(kan) =

∫
f(kan)D(k, a, n) dk da dn

Since G,K,A,N are all unimodular, G being reductive/semi-simple, K being compact, A and N being
abelian,∫

f(kan)D(k, a, n) dk dan =

∫
f(g) dg =

∫
f(k′gn′) dg =

∫
f(k′k · a · nn′)D(k′k, a, nn′) dk da dn

So D only depends on a. Let δ(a) = D(k, a, n).

For a′ ∈ A, ∫
f(ga′) dg =

∫
f(kana′) δ(a) dk da dn =

∫
f(kaa′n′) δ(a) dk da dn

where n′ = (a′)−1na′. Change variables a→ a(a′)−1.∫
f(kan′) δ(a) δ(a′)−1 dk da dn

So we have,∫
f(kan) δ(a) dk da dn =

∫
f(g) dg =

∫
f(ga′) dg =

∫
f(kan′) δ(a) δ(a′) dk da dn

To determine δ we need to determine the way that dn transforms under the change of variables n→ n′,
i.e. under conjugation by elements of A.

It is a general fact that, for oriented manifolds M1 and M2, for ω an i-form on M1, and for Φ an
orientation-preserving diffeomorphism,∫

M2

fΦ∗ω =

∫
M1

(f ◦ Φ−1)ω

for all test functions f , where Φ∗ is the transform/pullback by Φ. For Riemannian manifolds, M1 and
M2 with Riemannian measures dp and dq,∫

M2

F (q) dq =

∫
M1

F (Φ(p)) |det dΦp| dp

Here M1 = M2 = N , Φ(a) is the automorphism n→ ana−1, and the differential dΦ(a)e : n+ → n+ is
(Ad(a)|n+).

To see this we compute Φ∗(a) = |det(dΦ(a)e)| for a ∈ A, where

a =

a1

a2

a3


Take derivatives of Φ with respect to a basis corresponding to the positive roots: e.g., for GL3, xα, xβ ,
xα+β .

d

dt

∣∣∣∣
t=0

Φ(a)(exp(txα)) =
d

dt

∣∣∣∣
t=0

1 a1a
−1
2 t

1
1

 = a1a
−1
2
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Then

det(dΦ(a)e) = det

a1a
−1
2

a2a
−1
3

a1a
−1
3

 =

(
a1

a3

)2

Notice that this is the same as Ad(a) on n+

Ad(a)xα = a1a
−1
2 · xα

Ad(a)xβ = a2a
−1
3 · xβ

Ad(a)xα+β = a1a
−1
3 · xα+β

Putting this in terms of the positive roots,

Ad(a)xγ = eγ(log a) · xγ

So dΦ(a)e = (Ad(a)|n+) and

det
(

Ad a|n+

)
= det

eα(log a)

eβ(log a)

e(α+β)(log a)

 =
∏
α∈Σ+

eα(log a) = exp

( ∑
α∈Σ+

α(log a)

)
= e2ρ(log a)

where ρ is half the sum of positive roots. This is true in general, not just for GL3. The change of
measure when n→ ana−1 is

Φ∗(a) = det
(
dΦ(a)e

)
= det

(
Ad a|n+

)
= e2ρ(log a)

So we have shown that, for all a′ ∈ A,∫
f(kan) δ(a) dk da dn =

∫
f(kan) δ(a) δ(a′)−1 e2ρ log a′ dk da dn

which implies that δ(a′) = e2ρ log a′ , which is what we set out to prove.

A.2 Appendix Haar measure on SU(2)

I found a formula for the Haar measure on SU(2) in Cartan coordinates in Helgason (exercise 11, Ch
I). I haven’t had time to derive the formula myself yet . . .
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