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We explicate and clarify Jorgenson and Lang’s discussion in §1.5 of their book on heat Eisenstein series on
SLn(C). We have found a few of their statements to be ambiguous and difficult to interpret, and we
suspect that there may be some misprints, as some of the statements are not literally correct. These notes
attempt to address the ambiguities and inaccuracies.

1 Preliminaries

We recall some definitions and other preliminary material necessary for stating the results of §1.5 in
Jorgenson and Lang’s book on heat Eisenstein series on SLn(C). Besides preceding sections in this book,
see also Jorgenson and Lang’s book on spherical inversion on SLn(R). Note that Jorgenson and Lang use
some non-standard notation and terminology, due to their preference for explicit and direct arguments
rather than making use of more general results in Lie theory.

We start with some definitions from §1.4. Let G = SLn(C) and K = SU(n), which is a maximal compact
subgroup. Let U and A be the subgroups of G consisting of matrices of the following forms:

U :

 1
1 ∗

0
...

1

 , A :

 a1
a2 0

0
...

an

 , ai > 0 , so

n∏
i=1

ai = 1.

For n ≥ 2, let P be a partition of n, i.e. an ordered tuple P = (n1, . . . , nr+1) of positive integers whose sum
is n. Define non-negative integers mk, 0 ≤ k ≤ r + 1 by:

m0 = 0 , mk = n1 + . . . + nk , 1 ≤ i ≤ r + 1 .

Note that Jorgenson and Lang define mk for 1 ≤ k ≤ r + 1; we extend the definition to k = 0 to simplify
the statement of certain formulas.

Let UP and AP denote the subgroups of G consisting of matrices of the following forms:

UP :



1n1

1n2

∗

0

. . .

1nr+1


, AP :



a11n1

a21n2

0

0

. . .

anr+1
1nr+1


,

ai > 0 for 1 ≤ i ≤ r + 1,

so
r+1∏
i=1

ani
i = 1.
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Let GP be the subgroup of block diagonal matrices, in which each block has determinant one, i.e.

GP :



SLn1
(C)

SLn2
(C)

0

0

. . .

SLnr+1(C)



∼= SLn1
(C)× · · · × SLnr+1

(C) .

Note that AP and GP centralize each other and

APGP ∼= GLn1
(C)× . . . GLnr+1

(C).

Further, both AP and GP normalize UP . Thus the product P = UPAPGP is a subgroup of G; it is called
the standard reduced parabolic subgroup of G corresponding to the partition P.

Let KP = SU(n1)× . . . SU(nr+1) = KGP . Note that KP = K ∩ P . See the Remark in §1.4, page 27.

Given a standard reduced parabolic subgroup P of G = SLn(C) corresponding to a partition P of n, we
may denote the subgroups UP , AP , GP , and KP by UP , AP , GP , and KP .

Now proceeding to §1.5, we introduce subgroups UGP
and AGP

of GP :

UGP
:



1
1 ∗

0
...

1

1
1 ∗

0
...

1

0

0

. . .

1
1 ∗

0
...

1



, AGP
:



a1 0
. . .

0 am1

0

0

. . .

amr+1 0
. . .

0 amr+1


,

where a1, . . . , amr+1
are positive real numbers with

mk∏
j=mk−1+1

aj = 1 for all 1 ≤ k ≤ r + 1. Note that

Jorgenson and Lang do not explicitly describe these groups.

Now consider the Lie subalgebras of sln(C) corresponding to the subgroups U and A of SLn(C):

n = Lie(U) :

 0
0 ∗

0
...

0

 , a : Lie(A) =

 h1

h2
0

0
...

hn

 , hi ∈ R ,

n∑
i=1

hi = 0.
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Lie subalgebras of n include:

nP = Lie(UP ) :



0n1

0n2

∗

0

. . .

0nr+1


, nGP

= Lie(UGP
) :



0
0 ∗

0
...

0

0
0 ∗

0
...

0

0

0

. . .

0
0 ∗

0
...

0



.

And Lie subalgebras of a include aP , which is constant on each block:

aP = Lie(AP ) :



h11n1

h21n2

0

0

. . .

hnr+11nr+1


,

r+1∑
k=1

nkhk = 0 ,

and aGP
, whose blocks each have trace zero:

aGP
= Lie(AGP

) :



h1 0
. . .

0 hm1

0

0

. . .

hmr+1 0
. . .

0 hmr+1


,

such that, for all 1 ≤ k ≤ r + 1,

nk∑̀
=1

hmk−1+` = 0.

Consider the Lie subalgebra corresponding to GP :

gGP
= Lie(GP ) :



sln1
(C)

sln2(C)

0

0

. . .

slnr+1
(C)



∼= sln1
(C)⊕ · · · ⊕ slnr+1

(C) ,
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which contains nGP
and aGP

as well as kGP
= Lie(KP ) = su(n1)⊕ · · · ⊕ su(nr+1).

Note that gGP
has a decomposition gGP

= nGP
⊕ aGP

⊕ kGP
and, since gGP

∼= sln1
(C)⊕ · · · ⊕ slnr+1

(C),
each of the Lie subalgebras nGP

, aGP
, kGP

decomposes into a direct sum of corresponding Lie subalgebras
of sln1

(C), . . . , slnr+1
(C).

2 Characters of a

Corresponding to the Iwasawa decomposition G = UAK, we have what Jorgenson and Lang call
“(a, n)-relevant characters,” which are more commonly called the positive roots. Jorgenson and Lang
denote the set of such characters by R(n). Explicitly,

R(n) =

{
αi,j ∈ a∨ : αi,j

(
h1

. . .
hn

)
= hi − hj for some 1 ≤ i < j ≤ n

}
,

and it is defined by the fact that:

n =
⊕

α∈R(n)

nα , where nαi,j = C · Ei,j .

Jorgenson and Lang then introduce S(n), the subset of “simple characters” (usually called simple roots)
explicitly:

S(n) = {αi = αi,i+1 for some 1 ≤ i ≤ n− 1} .

Note that every α ∈ R(n) is a sum of elements of S(n). Note also that S(n) is a basis for a∨. (See A.3.)

We may identify elements of a∨ with elements of a by means of the G-invariant scalar product on g, which
is positive definite on a: for Z,Z ′ ∈ sln(C),

〈Z,Z ′〉 = Re tr(ZZ ′) .

In particular, for λ ∈ a∨, let Hλ be such that λ(H) = 〈Hλ, H〉 for all H ∈ a. Explicitly, for αi,j ∈ R(n),

Hi,j = Hαi,j
= Ei,i − Ej,j =



0

. . .
0
1
0

. . .
0
−1

0

. . .
0


.

We define R(nGP
) ⊂ R(n) such that:

nGP
=

⊕
α∈R(nGP

)

nα .

Explicitly, R(nGP
) consists of the characters hi − hj where hi and hj lie in the same block. More precisely,

using a partition {Ik : 1 ≤ k ≤ r + 1} of the set {1, . . . , n} corresponding to the partition P of n, i.e.
Ik = {i : mk−1 + 1 ≤ i ≤ mk}, we have R(nGP

) = {αi,j ∈ R(n)| i, j ∈ Ik for some k}.

Alternately, we may define R(nGP
) as the subset of characters that vanish on aP : {α ∈ R(n) : α|aP

≡ 0}.

We define S(nGP
) = R(nGP

) ∩ S(n). Note that every element of R(nGP
) is a sum of elements of S(nGP

).
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Next we define R(nP ) ⊂ R(n) such that

nP =
⊕

α∈R(nP )

nα .

Alternately, R(nP ) = R(n) \ R(nGP
). (Here the backslash denotes a set difference, not a quotient.)

Explicitly, R(nP ) consists of αi,j where i ∈ Ik and j ∈ I` for k 6= `, i.e. characters hi − hj where hi and
hj lie in different blocks.

Note that R(nP ) is not the same as the subset of characters in R(n) whose restriction to aGP is zero.

We define S(nP ) = R(nP ) ∩ S(n). Then S(nP ) = {αmk
: 1 ≤ k ≤ r}. Note that the elements of R(nP ) are

in general not expressible as sums of elements of S(nP ).

At this point Jorgenson and Lang remark that S(nP ) is a basis of a∨P . However this cannot literally be
true, since S(nP ) is defined as a subset of S(n), which is contained in a∨, but not a∨P . There are two
possible ways of interpreting this:

(1) Perhaps S(nP ) is a basis for the canonical isomorphic copy of a∨P inside a∨, namely

ã∨P = {µ̃ = µ ◦ πaP
: µ ∈ a∨}, where πaP

is the projection a→ aP .

(2) Perhaps restricting the elements of S(nP ) to aP yields a basis for a∨P , i.e. perhaps the set
S(nP )|aP

= {α|aP
: α ∈ S(nP )} is a basis for a∨P .

We can easily see that (1) fails by looking at an example. Let G = SL5(C), P = P 3,2. Consider
α3 ∈ S(nP ) and H ∈ aGP

. Then

α3(H) = α3


h1

h2
h3

h4
h5

 = h3 − h4 .

The fact that H ∈ aGP
implies h1 + h2 + h3 = 0 and h4 + h5 = 0. But these relations do not force

α3(H) = 0. Consider for example, H = H1 +H4 ∈ aGP
,

α3(H) = α3


1
−1

0
1
−1

 = −1 6= 0 .

Then α3 ∈ S(nP ), but α3 /∈ ã∨P , since α3|aGP
6≡ 0.

As it turns out, (2) is true; see A.5. Note that, along with the isomorphism a∨P
∼= ã∨P , this implies that

˜S(nP )|aP
= {α̃|aP

= α|aP
◦ πaP

: α ∈ S(aP )} is a basis for ã∨P .

Jorgenson and Lang also state that the elements of S(nP ) can be indexed in the form αP,1, . . . , αP,r.
However, we choose to notate the elements of S(nP ) as αm1

, . . . , αmr
to be clear that we are referring to

elements of S(nP ) ⊂ S(n) = {αi : 1 ≤ i ≤ n− 1}. Instead, we prefer to use the notation αP,1, . . . , αP,r to

refer to elements of the basis ˜S(nP )|aP
of ã∨P . More precisely, we let αP,k = α̃mk

|aP
. As discussed in A.6,

αP,k may be explicitly described as:

αP,k =

(
avg. of entries
in kth block

)
−
(

avg. of entries in
(k + 1)th block

)
.
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3 Orthogonality

3.1 Orthogonality of certain characters

After defining the relevant characters and simple characters, Jorgenson and Lang point out that

R(n) = R(nGP
) t R(nP ) .

This disjoint union is clear from the explicit descriptions of these sets. Referencing this equation, which
they label (3), Jorgenson and Lang state, “Directly from the definitions, we see that the decomposition (3)
is an orthogonal decomposition.” The intended meaning of this statement is unclear.

One interpretation of the statement would be that all the characters in R(nGP
) are orthogonal to all the

characters in R(nP ). However, this is clearly false, as can easily been seen by looking at an example. With
G = SL5(C) and P = P 3,2, we have α2,3 ∈ R(nGP

) and α3,4 ∈ R(nP ), but

〈α2,3, α3,4〉 = α2,3(H3,4) = α2,3

(
0
0
1
−1

0

)
= −1 6= 0 .

On the other hand, it seems odd to refer to a disjoint union of sets as a “decomposition,” so perhaps the
reference to Equation 3 is a misprint.

Perhaps they intended to refer to the orthogonal decomposition a∨ = ã∨P ⊕ ã∨GP
. This seems unlikely

though since, as shown above, R(nP ) * ã∨P (although R(nGP
) ⊂ ã∨GP

).

Perhaps Jorgenson and Lang are referring to the orthogonal decomposition n = nP ⊕ nGP
. This does follow

quickly from the definitions, but it also seems rather trivial and unrelated to the discussion that follows.

See A.8 for a list of true statements one can make regarding orthogonality of characters in a∨.

3.2 Orthogonal decomposition ρ = ρGP
+ ρP

As usual ρ ∈ a∨ is defined to be the half-sum of positive roots, although Jorgenson and Lang use a different
terminology, referring to it as the half-trace of the regular representation of a on n. For SLn(C), since the
multiplicity of each root is two, we have

ρ = ρG = 1
2

∑
α∈R(n)

m(α)α =
∑

α∈R(n)

α .

Analogously, we define

ρGP
=

∑
α∈R(nGP

)

α and ρP =
∑

α∈R(nP )

α .

Then clearly ρG = ρGP
+ ρP , since R(n) = R(nGP

) tR(nP ).

Note that Jorgenson and Lang reference an equation labeled (4) which states the disjoint union
S(n) = S(nGP

) t S(nP ), to justify the decomposition ρG = ρGP
+ ρP . However, the decomposition follows

rather from (3), which states the corresponding disjoint union for relevant characters. This is another
reason to question the reference to (3) in the unclear comment, discussed above, about the “orthogonal
decomposition.”

Further, (and this is Jorgenson and Lang’s Lemma 5.1), ρP is orthogonal to all α ∈ S(nGP
) and thus to

ρGP
, since ρGP

is a sum of relevant characters in R(nGP
) and every relevant character in R(nGP

) is a sum
of simple characters in S(nGP

).
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We briefly outline the proof; the appendices fill in the necessary details. See in particular B.2.

Using the “dual basis” S(n)′ of a∨, one can show that 〈ρG, α〉 = 2 for all α ∈ S(n); see A.3 and B.2. Since
gGP

∼= sln1
(C)⊕ . . . slnr+1

(C), a similar argument can be used to show that 〈ρGP
, α〉 = 2 for all

α ∈ S(nGP
); see B.2. Then, for all α ∈ S(nGP

),

〈ρP , α〉 = 〈ρG − ρGP
, α〉 = 〈ρG, α〉 − 〈ρGP

, α〉 = 2− 2 = 0 .

Note that there appears to be a misprint in Jorgenson and Lang’s equation (7P). It states 〈ρG, α〉 = 2 for
all α ∈ S(nGP

). This clearly true, following trivially from the fact that 〈ρG, α〉 = 2 for all α ∈ S(n).
However, the stronger statement, that 〈ρGP

, α〉 = 2 for all α ∈ S(nGP
), seems to be needed for the proof.

Appendices

A Subspaces and Bases for a and a∨

In this appendix, we discuss the orthogonal decomposition a = aP ⊕ aGP
and the corresponding orthogonal

decomposition of a∨, providing explicit descriptions of the projection maps and of bases and dual bases for
the various subspaces.

A.1 Orthogonal decomposition of a

The Lie subalgebra a decomposes as a direct sum: a = aGP
⊕ aP . Given any H ∈ a, we may write

H = HaP
+HaGP

, as follows.

Let h1, . . . , hn be the (diagonal) entries of H. Then the jth entry of HaP
, lying in the kth block, (i.e.

mk−1 + 1 ≤ j ≤ mk for some k in the range 1 ≤ k ≤ r + 1), is given by:

h′j =
1

nk

mk∑
`=mk−1+1

h` ,

i.e. each of the entries in the kth block of HaP
is equal to the average of the entries in the kth block of H.

The jth (diagaonal) entry of HaGP
, lying in the kth block, is

h′′j = hj −
1

nk

mk∑
`=mk−1+1

h` =
1

nk

mk∑
`=mk−1+1

(hj − h`) =
(nk − 1)hj

nk
−
∑
6̀=j

h` ,

where the last summation runs over all ` 6= j in the range mk−1 + 1 ≤ ` ≤ mk.

For example, for G = SL5(C) and P = P 3,2, we have:
h1

h2
h3

h4
h5

 =


h1+h2+h3

3
h1+h2+h3

3
h1+h2+h3

3
h4+h5

2
h4+h5

2



+


2h1−h2−h3

3
−h1+2h2−h3

3
−h1−h2+2h3

3
h4−h5

2
−h4+h5

2

 .
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A.2 Orthogonal decomposition of a∨.

The orthogonal decomposition a = aP ⊕ aGP
gives rise to an orthogonal decomposition of the dual space a∨

into subspaces isomorphic to a∨P and a∨GP
. In particular, we have a∨ = ã∨P ⊕ ã∨GP

with

a∨P
∼= ã∨P = {µ̃ = µ ◦ πaP

: µ ∈ a∨P } = {λ ∈ a∨ : λaGP
≡ 0} ⊂ a∨ ,

a∨GP
∼= ã∨GP

= {µ̃ = µ ◦ πaGP
: µ ∈ a∨GP

} = {λ ∈ a∨ : λaP
≡ 0} ⊂ a∨ ,

where πaP
and πaGP

denote the projections from a to aP and aGP
, respectively.

A.3 Bases for a and a∨

One basis for a is B = {Hi | 1 ≤ i ≤ n− 1}, where

Hi = Hαi
= Ei,i − Ei+1,i+1 =


0

. . .
0
1
−1

0

. . .
0

 .

The notation Hi is standard, but the usage of B to denote the collection of such Hi is not. It will be useful
to be able to refer to B when considering bases of subspaces of a of their dual spaces.

This gives rise to a basis for a∨ under the identification of a with a∨ via 〈 , 〉. The corresponding basis for
a∨ is S(n) = {αi : 1 ≤ i ≤ n− 1}, where, as above, αi(H) = hi − hi+1.

The basis B = {Hi} for a also gives rise to a dual basis S(n)′ = {α′i} for a∨. (See ??.)

α′i(H) = h1 + · · ·+ hi .

Finally, we may identify each α′i with an element H ′i of a via 〈 , 〉, to obtain another basis B′ of a, which is
also “dual” to B in the sense that 〈Hi, H

′
j〉 = δi,j .

H ′i =



1− i
n

. . .

1− i
n
− i
n

. . .

− i
n


,

where the transition from 1− i
n to − i

n happens from the ith to the (i+ 1)th diagonal entry.

For example, with G = SL5(C) and P = P 3,2,

H ′1 =


4
5

− 1
5

− 1
5

− 1
5

− 1
5

 , H ′2 =


3
5

3
5

− 2
5

− 2
5

− 2
5

 , H ′3 =


2
5

2
5

2
5

− 3
5

− 3
5

 , H ′4 =


1
5

1
5

1
5

1
5

− 4
5

 .

We have explicit descriptions of the bases {αi} and {α′i} for a∨ as functions of h1, . . . , hn, but we may also
want to express αi as a linear combination of elements of {α′i} or vice versa.
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α′i =
(
n−i
n

) i∑
j=1

j αj +
(
i
n

) n−1∑
j=i+1

(n− j)αj .

For example, for G = SL5(C) and P = P 3,2,

α′1 = 4
5

(
α1

)
+ 1

5

(
3α2 + 2α3 + α4

)
α′2 = 3

5

(
α1 + 2α2

)
+ 2

5

(
2α3 + α4

)
α′3 = 2

5

(
α1 + 2α2 + 3α3

)
+ 3

5

(
α4

)
α′4 = 1

5

(
α1 + 2α2 + 3α3 + 4α4

)
.

Conversely, we may write αi as a linear combination of elements of S(n)′, as follows:

αi = −α′i−1 + 2α′i − α′i+1,

where α′0 = α′n = 0.

For example, for G = SL5(C) and P = P 3,2,

α1 = 2α′1 − α′2 , α2 = −α′1 + 2α′2 − α′3 , α3 = −α′2 + 2α′3 − α′4 , α4 = −α′3 + 2α′4 .

A.4 Bases for aP and aGP

We have two bases B = {Hi} and B′ = {H ′i} for a, and we wish to find bases for the orthogonal subspaces
aGP

and aP .

Note that for 1 ≤ i ≤ n− 1, i 6= mk, for any 1 ≤ k ≤ r, Hi ∈ aGP
. In fact such Hi span aGP

, so form a
basis for aGP

.

For example, for G = SL5(C), P = P 3,2,

H1 =


1
−1

0
0

0

 , H2 =


0

1
−1

0
0

 , H4 =


0

0
0

1
−1


form a basis for aGP

.

Thus we see that intersecting the basis B for a with the subspace aGP
yields a basis for aGP

. One might
naively hope that the complement {Hi : i = mk, 1 ≤ k ≤ r} yields a basis for aP , but this is not so since
such Hi do not even lie in aP . However, we may obtain a basis for aP by projecting such Hi to aP .

Using the method described in A.1, we find the projection πaP
(Hi) =

(
Hmk

)
aP

of Hi with i = mk to aP .

The matrix
(
Hmk

)
aP

is block diagonal, with all blocks on the diagonal being zero except the kth block

which is 1
nk
1nk

and the (k + 1)th block which is − 1
nk+1

1nk+1
.

In our example, G = SL5(C), P = P 3,2, we have

(
H3

)
aP

=


1
3

1
3

1
3

− 1
2
− 1

2

 .
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To see the structure more generally, let us consider another example, say G = SL12(C), P = P 4,3,3,2. Then
the following three matrices form a basis for aP .

(
H4

)
aP

=



1
414

− 1
313

0

0

03

02


,

(
H7

)
aP

=



04

1
313

0

0

− 1
313

02


,

(
H10

)
aP

=



04

03

0

0

1
313

− 1
212


.

Now we look for bases of aGP
and aP related to the basis B′ = {H ′i} of a. Note that for i = mk for some

1 ≤ k ≤ r, H ′i ∈ aP . Since B′ ∩ aP = {H ′i : i = mk, 1 ≤ k ≤ r} is linearly independent (being a subset of
the basis B′) and has cardinality r = dimR(aP ), it is a basis for aP .

In our small example, G = SL5(C), P = P 3,2, a basis for aP is given by the intersection B′ ∩ aP = {H ′3},
where

H ′3 =


2
5

2
5

2
5

− 3
5
− 3

5

 .

Now we aim to find a basis for aGP
from B′ = {H ′i}. The intersection of B′ with aGP

is empty, but we
may construct a basis for aGP

by projecting H ′i (i 6= mk, 1 ≤ k ≤ r) to aGP
.

For i = mk−1 + ` with 1 ≤ ` ≤ nk − 1 (so mk−1 < i < mk), the projection of H ′i to aGP
is zero except for in

the kth block, which is:

(
kth block of (H ′i)aGP

)
=


1−`/nk

. . .
1−`/nk

−`/nk

. . .
−`/nk

 ,

where the transition from 1− `/nk to −`/nk occurs at the transition from the ith to the (i+ 1)st position.

Recall that aGP
decomposes into a direct sum of (copies of) subalgebras of sln1

(C), . . . , slnr+1
(C), where

for 1 ≤ k ≤ r + 1, the subalgrebra of slnk
(C) that (whose copy) occurs in the direct sum is aslnk

(C), the

subalgebra of diagonal nk × nk matrices of trace zero. Clearly {(H ′i)aGP
: i = mk−1 + `, 1 ≤ ` ≤ nk − 1} is

a basis for the copy of aslnk
(C) inside aGP

, so {(H ′i)aGP
: 1 ≤ i ≤ n− 1, i 6= mk} is a basis for aGP

.

Returning to our example G = SL5(C), P = P 3,2, a basis for aGP
consists of:

(H ′1)aGP
=


2
3
− 1

3
− 1

3

0
0

 , (H ′2)aGP
=


1
3

1
3
− 2

3

0
0

 , (H ′4)aGP
=


0

0
0

1
2
− 1

2

 .
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A.5 Bases for a∨GP
and a∨P

A.5.1 Bases for a∨GP

First we look for a basis for a∨GP
related to S(nGP

). Since elements of S(nGP
) are linear maps a→ R,

rather than aGP
→ R, we know that S(nGP

) itself cannot be a basis for aGP
. However, restricting elements

of S(nGP
) to aGP

gives a basis for a∨GP
, as is clear from the fact that

B ∩ aGP
= {Hi : 1 ≤ i ≤ n− 1, i 6= mk for any 1 ≤ k ≤ r}

is a basis for aGP
. We denote the set of such restrictions by S(nGP

)|aGP
.

For example, when G = SL5(C) and P = P 3,2, a basis for a∨GP
is given by:

α1|aGP
(H) = h1 − h2, α2|aGP

(H) = h2 − h3, α3|aGP
(H) = h4 − h5 ,

where H =


h1
h2
h3
h4
h5

 with h1 + h2 + h3 = 0 and h4 + h5 = 0.

A basis for a∨GP
dual to S(aGP

)|aGP
is obtained by restricting the elements of S(nGP

)′, defined as
{α′ ∈ S(n)′ : α ∈ S(nGP

)}, to aGP
. We denote this basis by S(nGP

)′|aGP
.

We describe these characters explicitly as functions of H ∈ aGP
. For αi ∈ S(nGP

), we have i and i+ 1
within the same partition Ik = {mk−1 < i ≤ mk} of {1, . . . , n}, i.e. there is some k in 1 ≤ k ≤ r + 1, such
that mk−1 < i < mk. Then for H ∈ aGP

, with (diagonal) entries h1, . . . , hn,

α′i(H) = α′i

(
h1

. . .
hn

)
= h1 + · · ·+ hmk−1

+ hmk−1+1 + · · ·+ hi = hmk−1+1 + · · ·+ hi ,

since the trace of each block in H is zero. In other words, for i in the range mk−1 < i < mk, the character
α′i|aGP

takes the sum of the (diagonal) entries in the kth block of a matrix H ∈ aGP
up to and including

the ith (diagonal) entry.

For example, for G = SL5(C), P = P 3,2, let H =


h1
h2
h3
h4
h5

 ∈ aGP
, i.e. h1 + h2 + h3 = 0 and

h4 + h5 = 0. Then the basis S(nGP
)′|aGP

for a∨GP
consists of:

α′1|aGP
(H) = h1 , α′2|aGP

(H) = h1 + h2 , α′4|aGP
(H) = h4 .

A.5.2 Bases for a∨P

Next we describe bases for a∨P corresponding to S(nP ) and S(nP )′ respectively.

A basis for aP is obtained by restricting elements of S(nP ) to aP ; we denote the set of such restrictions by
S(nP )|aP

. A dual basis is obtained by restricting elements of S(nP )′ = {α′ : α ∈ S(nP )} to aP .

Explicitly, for i = mk, with 1 ≤ k ≤ r, for H ∈ aP , with diagonal entries constant on each block, with h`
being the constant entry of the `th block,

α′i(H) = n1h1 + n2h2 + . . . + nkhk (where h` is the constant diagonal entry of the `th block.)

We may prefer to index the entries of H ∈ aP so that the jth entry is hj . In this case, the fact that the
entries are constant on each block implies h1 = h2 = · · · = hm1

, hm1+1 = hm1+2 = · · · = hm2
, . . . ,

hmr+1 = hmr+2 = · · · = hmr+1
= hn, and the formula may be written

α′i(H) = n1h1 + n2hm1+1 + . . . + nkhmk−1+1 (where hj is the jth diagonal entry of H.)
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For example, for G = SL5(C) and P = P 3,2, and for H ∈ aP , say H =


h1
h2
h3
h4
h5

 with 3h1 + 2h4 = 0,

the basis S(nP )′aP
for a∨P consists of the single character:

α′3|aP


h1

h1
h1

h4
h4

 = 3h1 .

To see the structure more generally, let us consider another example, say G = SL12(C), P = P 4,3,3,2. Then
H ∈ aP may be written in the form

H =



h114

h513

0

0

h813

h1112


, where 4h1 + 3h5 + 3h8 + 2h11 = 0 .

In this case, S(nP ) = {α4, α7, α10} and the basis S(nP )′aP
for a∨P consists of

α′4|aP
(H) = 4h1 , α′7|aP

(H) = 4h1 + 3h5 , α′10|aP
(H) = 4h1 + 3h5 + 3h8 .

A.6 Bases for ã∨GP
and ã∨P

Now we consider bases for the isomorphic copies ã∨GP
and ã∨P of a∨GP

and a∨P , respectively, inside a∨.

First we introduce some notation. Recall that any H ∈ a may be written uniquely in the form
H = HaP

+HaGP
, where HaP

= πaP
(H) ∈ aP and likewise HaGP

is the projection of H to aaGP
. (See A.1.)

For µ ∈ a∨GP
, we extend µ to a function µ̃ on a by

µ̃(H) = µ̃(HaP
+HaGP

) = µ(HaGP
) ,

so in particular, µ̃|aP
≡ 0. Similarly, we may extend elements of a∨P to linear functions on a whose

restrictions to aGP
are zero. We use the tilde notation to denote these extensions also.

A.6.1 Bases for ã∨GP

Since ã∨GP

∼= a∨GP
, and as we have shown above in A.5, S(nGP

)|aGP
is a basis for a∨GP

, it is clear that

˜S(nGP
)|aGP

= {α̃|aGP
: α ∈ S(nGP

)}

is a basis for ã∨GP
. However, we also know that S(nGP

) = {α ∈ S(n) : α|aP
≡ 0}, so in fact

S(nGP
) = ˜S(nGP

)|aGP
, and it is simpler to say that S(nGP

) is a basis for ã∨GP
.

Similarly, since S(nGP
)′|aGP

is a basis for a∨GP
dual to S(nGP

)|aGP
as shown in A.5, we can see that

˜S(nGP
)′|aGP

is a basis for ã∨GP
that is dual to S(nGP

) = ˜S(nGP
)|aGP

. Note, however, that characters in

S(nGP
)′ do not generally vanish on aP , so ˜S(nGP

)′|aGP
is not simply S(nGP

)′.

12



We describe the characters α̃′|aGP
in ˜S(nGP

)′|aGP
explicitly. Recall that S(nGP

)′ = {α′i : i 6= mk}.

Given i in the range mk−1 < i < mk, let ` be defined by i = mk−1 + `. Then i is the `th element in the kth
partition Ik = {mk−1 < i ≤ mk} of {1, . . . , n}, with 1 ≤ ` ≤ nk − 1. Using the explicit description of the
matrix decomposition H = HaGP

+HaP
in A.3 and the explicit description of α′i|aGP

in A.5, we can see that

α̃′i|aGP
=

(
sum of first ` entries

in kth block

)
− `

(
avg. of entries in

kth block

)
.

Note that the first ` entries in the kth block are the entries in the kth block up to and including the ith
entry of the whole matrix.

For example, for G = SL5(C), P = P 3,2, and H =


h1
h2
h3
h4
h5

,

α̃′1|aGP
(H) = h1 − 1

3 (h1 + h2 + h3) = 2
3h1 −

1
3h2 −

1
3h3

α̃′2|aGP
(H) = h1 + h2 − 2

3 (h1 + h2 + h3) = 1
3h1 + 1

3h2 −
2
3h3

α̃′4|aGP
(H) = h4 − 1

2 (h4 + h5) = 1
2h4 −

1
2h5 ,

and these three characters constitute the basis for ã∨GP
that is dual to S(nGP

).

We may also write α̃′i|aGP
as a linear combination of αj ∈ S(n). For i with mk−1 < i < mk, 1 ≤ k ≤ r + 1,

α̃′i|aGP
=

n−1∑
j=1

cj αj where cj =


(j −mk−1)(mk − i)/nk if mk−1 < j ≤ i
(mk − j)(i−mk−1)/nk if i < j < mk

0 else

.

Note that we do not need all the characters in S(n) just those in S(nGP
), since, as we have already shown,

S(nGP
) is a basis for a∨GP

.

For example, for G = SL5(C) and P = P 3,2, the basis for ã∨GP
that is dual to S(nGP

) consists of:

α̃′1|aGP
= 2

3α1 + 1
3α2 , α̃′2|aGP

= 1
3α1 + 2

3α2 , α̃′4|aGP
= 1

2α4 .

Now we write α̃′i|aGP
as a linear combination of α′j ∈ S(n)′. For i such that mk−1 < i < mk, 1 ≤ k ≤ r + 1,

α̃′i|aGP
= −

(
mk−i
nk

)
α′mk−1

+ α′i −
( i−mk−1

nk

)
α′mk

,

where α′m0
= α′0 = α′mr+1

= 0. In particular, note that α̃′i|aGP
6= α′i, although both agree on aGP

.

Returning to our example, G = SL5(C) and P = P 3,2, we see

α̃′1|aGP
= α′1 − 1

3α
′
3 , α̃′2|aGP

= α′2 − 2
3α
′
3 , α̃′4|aGP

= − 1
2α
′
3 + α′4 .
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A.6.2 Bases for ã∨P

Now we describe bases for ã∨P corresponding to S(nP ) and S(nP )′. Based on our work with ã∨GP
, we may

hope that S(nP ) is a basis for ã∨P , but this is not the case. In fact, elements of S(nP ) need not vanish on

aGP
and so need not even be in ã∨P . However, since S(nP )|aP

is a basis for a∨P as shown in A.5, we know by

the isomorphism a∨P
∼= ã∨P that ˜S(nP )|aP

is a basis for ã∨P .

Explicitly S(nP ) = {αmk
: 1 ≤ k ≤ r}, so the basis ˜S(nP )|aP

for ã∨P consists of

α̃mk
|aP

=

(
avg. of entries
in kth block

)
−
(

avg. of entries in
(k + 1)th block

)
, 1 ≤ k ≤ r .

Note that Jorgenson and Lang (inaccurately) state that S(nP ) is a basis for a∨P and then go on to denote
the elements of S(nP ) by αP,1, . . . , αP,r. We choose to refer to the elements of S(nP ) as αm1

, . . . , αmr
to

make it clear that they lie in S(n) = {α1, . . . , αn−1}. But we adopt the notation αP,k = α̃mk
|aP

. Thus in
our notation {αP,k : 1 ≤ k ≤ r} is a basis for the copy of a∨P inside a∨, which is one way of interpreting
what Jorgenson and Lang intended in the first place.

For example, with G = SL5(C), P = P 3,2, S(nP ) = {α3}, and the basis ˜S(nP )|aP
for ã∨P consists of

αP,1(H) = α̃3|aP


h1
h2
h3
h4
h5

 = 1
3 (h1 + h2 + h3) − 1

2 (h4 + h5) .

For G = SL12(C), P = P 4,3,3,2,

αP,1 = α̃4|aP
= 1

4 (h1 + h2 + h3 + h4) − 1
3 (h5 + h6 + h7)

αP,2 = α̃7|aP
= 1

3 (h5 + h6 + h7)− 1
3 (h8 + h9 + h10)

αP,3 = α̃10|aP
= 1

3 (h8 + h9 + h10)− 1
2 (h11 + h12) .

We may write these characters in terms of the basis S(n) of simple characters in a∨. For 1 ≤ k ≤ r,

αP,k = α̃mk
|aP

=
1

nk

nk∑
`=1

` αmk−1+` +
1

nk+1

nk+1−1∑
`=1

(nk+1 − `)αmk+` .

In particular, notice that α̃mk
|aP
6= αmk

as elements of a∨.

For example, for G = SL5(C), P = P 3,2,

αP,1 = α̃3|aP
= 1

3 (α1 + 2α2 + 3α3) + 1
2 (α4) .

For G = SL12(C), P = P 4,3,3,2,

αP,1 = α̃4|aP
= 1

4 (α1 + 2α2 + 3α3 + 4α4) + 1
3 (2α5 + α6)

αP,2 = α̃7|aP
= 1

3 (α5 + 2α6 + 3α7) + 1
3 (2α8 + α9)

αP,3 = α̃10|aP
= 1

3 (α8 + 2α9 + 3α10) + 1
2 (α11) .

We may also write these characters in terms of the dual basis S(n)′. For 1 ≤ k ≤ r,

αP,k = α̃mk
|aP

= −
(

1
nk

)
α′mk−1

+
(

1
nk

+ 1
nk+1

)
α′mk

−
(

1
nk+1

)
α′mk+1

.
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For example, for G = SL5(C), P = P 3,2,

αP,1 = α̃3|aP
=

(
1
3 + 1

2

)
α′3 −

(
1
2

)
α′5 = 5

6α
′
3 .

For G = SL12(C), P = P 4,3,3,2,

αP,1 = α̃4|aP
=

(
1
4 + 1

3

)
α′4 − 1

3α
′
7 = 7

12α
′
4 − 1

3α
′
7

αP,2 = α̃7|aP
= − 1

3α
′
4 +

(
1
3 + 1

3

)
α′7 − 1

3α
′
10 = − 1

3α
′
4 + 2

3α
′
7 − 1

3α
′
10

αP,3 = α̃10|aP
= − 1

3α
′
7 +

(
1
3 + 1

2

)
α′10 = − 1

3α
′
7 + 5

6α
′
10.

Note that, in fact, all we need are the characters in S(nP )′. We shall see below that S(nP )′ is a basis for ã∨P .

Finally we consider a basis for ã∨P that is dual to ˜S(nP )|aP
. A priori, this is ˜S(nP )′|aP

; this is clear from
the fact that S(nP )′|aP

is a basis for a∨P that is dual to S(nP )|aP
, as we have shown in A.5. . However, note

that for α′mk
∈ S(nP )′, and H ∈ aGP

,

α′mk
(H) = (h1 + · · ·+ hm1

) + . . . + (hmk−1+1 + · · ·+ hmk
) = 0 + · · ·+ 0 = 0 ,

i.e. α′mk
|aGP

≡ 0, so α̃′mk
|aP
≡ α′mk

on a, and indeed ˜S(nP )′|aP
= S(nP )′.

A.7 Summary of Bases

We summarize the results of the preceding subsections in a table, for convenience. We use the abbreviated
phrase “i 6= mk”, to mean “1 ≤ i ≤ n− 1, i 6= mk for any k with 1 ≤ k ≤ r,” and similarly, whenever we
write “i = mk,” we mean “i = mk for some k with 1 ≤ k ≤ r.”

Space Basis Dual Basis

a B = {Hi : 1 ≤ i ≤ n− 1} B′ = {H ′i : 1 ≤ i ≤ n− 1}

a∨ S(n) = {αi : 1 ≤ i ≤ n− 1} S(n)′ = {α′i : 1 ≤ i ≤ n− 1}

aGP
B ∩ aGP

= {Hi : i 6= mk} πaGP
(B′ ∩ aGP

) = {(H ′i)aGP
: i 6= mk}

aP πaP
(B ∩ aP ) = {(Hi)aP

: i = mk} B′ ∩ aP = {H ′i : i = mk}

a∨GP
S(nGP

)|aGP
= {αi|aGP

: i 6= mk} S(nGP
)′|aGP

= {α′i|aGP
: i 6= mk}

a∨P S(nP )|aP
= {αi|aP

: i = mk} S(nP )′|aP
= {α′i|aP

: i = mk}

ã∨GP
S(nGP

) = {αi : i 6= mk} ˜S(nGP
)′|aGP

= {α̃′i|aGP
: i 6= mk}

ã∨P
˜S(nP )|aP

= {α̃i|aP
: i = mk} S(nP )′ = {α′i : i = mk}

A.8 Orthogonality of Characters in a∨

Given α ∈ S(nP ) and β ∈ S(nGP
), we do not expect α orthogonal to β nor α′ orthogonal to β′.

For example, with G = SL5(C), P = P 3,2, α = α3 and β = α4,

〈α, β〉 = 〈α3, α4〉 = 〈H3, H4〉 = −1 6= 0 ,
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〈α′, β′〉 = 〈α′3, α′4〉 = 〈H ′3, H ′4〉 = 3
5 6= 0 .

See the A.3 for explicit descriptions of the matrices Hi and H ′i.

However, for all α ∈ S(nP ) and β ∈ S(nGP
), we do have the following four orthogonality statements, all of

which hold in a∨:

(1) α̃|aP
⊥ β , (2) α′ ⊥ β̃′|aGP

, (3) α′ ⊥ β , (4) α ⊥ β′ .

Note that these orthogonality statements give us four ways to construct a basis for a∨ that is a disjoint

union of (mutually orthogonal) bases for ã∨P and ã∨GP
.

A.9 Failure to prove the orthogonality of ρGP
and ρP

After our discussion of bases for ã∨P and ã∨GP
in A.6 and constructing bases for a∨ that can be written as a

disjoint union of (mutually orthogonal) bases for ã∨P and ã∨GP
in A.8, we may (naively) hope that a proof

for the orthogonality of ρGP
and ρP can be obtained relatively quickly using these fairly abstract results.

However, this approach fails, for although ρGP
can easily be shown to lie in ã∨GP

—since it is defined as the
sum of relevant characters in R(nGP

), all such relevant characters are sums of simple characters in S(nP ),

and the set S(nGP
) is a basis for ã∨GP

—it is not straightforward to show that ρP lies in ã∨P . As mentioned

above, R(nP ) does not lie in ã∨P , characters in R(nP ) are not expressible as linear combinations of elements

in S(nP ), and S(nP ) does not form a basis for ã∨P in any case.

In retrospect, we should not be surprised at the failure of arguments neglecting to take into account the
highly structured nature of the situation, in particular the facts that gGP

is a direct sum of copies of
slnk

(C), 1 ≤ k ≤ r + 1 and that ρ, ρGP
, and ρP reflect the structures of g and gGP

.

B The “half-trace” ρ

B.1 Formulas for the “half-trace” ρ

The “half-trace” of the regular representation of a on n is defined as

ρ = 1
2

∑
α∈R(n)

mαα ,

where mα is the multiplicity of α, namely mα = dimR(nα). Note that for G = SLn(C), mα = 2 for all
α ∈ R(n), so

ρ
SLn(C)

=
∑

α∈R(n)

α .

We may write ρ in terms of the basis S(n) = {αi : 1 ≤ i ≤ n− 1} of a∨, using the fact that that every
α ∈ R(n) is of the form α = αi,j = αi + · · ·+ αj−1 for some 1 ≤ i < j ≤ n.

ρ =

n−1∑
i=1

i(n− i)αi .

Using this and the formula for αi in terms of the basis S(n)′ in A.3, we may also write ρ in terms of the
basis S(n)′ = {α′i : 1 ≤ i ≤ n− 1} of a∨, which is dual to S(n),

ρ = 2
∑

α′∈S(n)′
α′ .
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B.2 That 〈ρ, α〉 = 2 for all α ∈ S(n) and an analogous statement for ρGP

First we show that, for α ∈ S(n), 〈ρ, α〉 = 2. This is obtained easily from the formula for ρ in terms of the
basis S(n)′ for a∨ which is dual to S(n); see B.1. Indeed, for any α = αj ∈ S(n),

〈ρ, α〉 =
〈
2
∑

α′i∈S(n)′
α′i, αj

〉
= 2

∑
α′i∈S(n)′

〈α′i, αj〉 = 2 .

We will show that an analogous result holds for ρGP
, namely: for any α ∈ S(nGP

), 〈ρGP
, α〉 = 2.

Note that the analogous statement for ρP is false; see B.3.

The key observation is that gGP
∼= sln1

(C)⊕ · · · ⊕ slnr+1
(C) and aGP

is the direct product of isomorphic
copies of the Iwasawa a-parts aslnk

of the slnk
(C) for 1 ≤ k ≤ r + 1. In order to avoid excessively

cumbersome notation, we denote these isomorphic copies as a1, . . . , ar+1, so that

aGP
= a1 ⊕ · · · ⊕ ar+1 with ak ∼= aslnk

⊂ slnk
(C) .

The matrices in ak are block diagonal, with all the blocks except the kth block being zero, and the kth
block being diagonal with trace zero.

Recall that
{Hi : 1 ≤ i ≤ n− 1, i 6= mk for any 1 ≤ k ≤ r}

and
{(H ′i)aGP

: 1 ≤ i ≤ n− 1, i 6= mk for any 1 ≤ k ≤ r}

are bases for aGP
that are dual to each other. See A.4 for explicit descriptions of the matrices in these

bases. We obtain bases for ak as subsets of these bases for aGP
. For fixed k, the sets

Bk = {Hi : mk−1 < i < mk} and B′k = {(H ′i)aGP
: mk−1 < i < mk}

are bases for ak that are dual to each other. Note that the matrices in Bk and B′k are block diagonal, with
each block except for the kth block being a zero matrix and the kth block of being of the same form (but
smaller size, namely nk × nk instead of n× n) as the matrices in the bases B = {Hi} and B′ = {H ′i},
respectively, of a; see A.3.

Next we describe a basis for the isomorphic copy ã∨k of a∨k in a∨. Recall that S(nGP
) is a basis for the

isomorphic copy ã∨GP
of a∨GP

inside a∨; see A.2 and A.6.

Since every α ∈ S(nGP
) is in the form αi, for 1 ≤ i ≤ n− 1 and i 6= mk for any 1 ≤ k ≤ r, we may partition

S(nGP
) as follows:

S(nGP
) =

⊔
1≤k≤r+1

S(nGP
)k , where S(nGP

)k = {αi : mk−1 < i < mk} ,

and S(nGP
)k is a basis for ã∨k ⊂ a∨.

Moreover, since R(nGP
) consists of all the characters αi,j where i and j are in the same partition

Ik = {i : mk−1 + 1 ≤ i ≤ mk} of indices, we can partition R(nGP
) correspondingly,

R(nGP
) =

⊔
1≤k≤r+1

R(nGP
)k where R(nGP

)k = {αi,j : i, j ∈ Ik} ,

and every character in R(nGP
)k is a sum of elements of S(nGP

)k, since αi,j = αi + · · ·+ αj−1.
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In fact, the structure of S(nGP
)k inside R(nGP

)k is the same as the structure of the simple characters

inside the relevant characters for slnk
(C). This motivates defining ρk ∈ ã∨k by

ρk =
∑

α∈R(nGP
)k

α,

and aiming to show:

ρk =

nk−1∑
`=1

`(nk − `)αmk−1+` = 2

nk−1∑
`=1

˜α′mk−1+`
.

The proof of the first part of this formula is very similar to the proof of the corresponding formula in B.1.
To prove the second part of the formula, we need to write an arbitrary αi ∈ S(nGP

)k in terms of a dual

basis for ã∨k in a∨. Recall that for αi ∈ S(n),

αi = −α′i−1 + 2α′i − α′i+1 ,

where, in order to allow this formula to apply to α1 and αn−1, we define α′0 = α′n = 0. The isomorphism
a∨ ∼= a gives

Hi = −H ′i−1 + 2H ′i − H ′i+1 ,

where H ′0 = H ′n = 0n. Thus we expect that for fixed k and for mk−1 < i < mk,

Hi = −(H ′i−1)aGP
+ 2(H ′i)aGP

− (H ′i+1)aGP
.

Indeed, given the observation above about the matrices in Bk and B′k being zero except on the kth block,
where they are of the same form (but smaller size) as the matrices in B and B′, respectively, the only
thing to check is that the formula holds in the boundary cases i = mk−1 + 1 and i = mk − 1. These cases
are easily verified, the key being that H ′mk−1

and H ′mk
are both in aP , so their projections to aGP

are zero.

Thus we have the corresponding formula for characters in ã∨k . For i in the range mk−1 < i < mk,

αi = − ˜α′i−1|aGP
+ 2 α̃′i|aGP

− ˜α′i+1|aGP
.

To simplify the notation, for fixed k, we let

α′GP ,` = α̃′i|aGP
, where i = mk−1 + `.

Thus {α′GP ,`
: 1 ≤ ` ≤ nk − 1} is a basis for ã∨k that is dual to S(nGP

)k. Now we may prove the second
part of the desired formula follows from the first part.

With this all in place, we may now show that ρGP
satisfies the desired relation. Indeed,

ρGP
=

r+1∑
k=1

ρk = 2

r+1∑
k=1

nk−1∑
`=1

α′GP ,` = 2
∑

αi∈S(nGP
)

α̃′i|aGP
,

so for all α = αj ∈ S(nGP
),

〈ρGP
, α〉 = 2

∑
αi∈S(nGP

)

〈α̃′i|aGP
, αj〉 = 2 .

B.3 The analogous statement for ρP is false

Given the discussion in the previous section, we may wonder whether 〈ρP , α〉
?
= 2 for all α ∈ S(nP ). If so,

then the fact that 〈ρ, α〉 = 2 for all α ∈ S(nP ) ⊂ S(n) would imply that 〈ρGP
, α〉 is zero for all α ∈ S(nP ),

and this would perhaps provide another avenue for trying to prove the orthogonality of ρGP
and ρP . (See

3.2.) This approach is problematic for a variety of reasons. First we must remember that the relevant
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characters in R(nP ) cannot typically be written as sums of simple characters in S(nP ), and ρP cannot be
written as a linear combination of elements of S(nP ). So showing that 〈ρGP

, α〉 is 2 for all α ∈ S(nP ) would
not imply the orthogonality of ρGP

and ρP .

We may still wonder, based on apparent symmetries between aP and aGP
, if 〈ρP , α〉 is equal to 2 for all

α ∈ S(nP ). A quick look at an example shows that this is not true.

Consider G = SL5(C) and P = P 3,2. Then

R(nP ) = {α1,4, α1,5, α2,4, α2,5 , α3,4, α3,5} and S(nP ) = {α3} .

Thus for α = α3 = α3,4 ∈ S(nP ),

〈ρP , α〉 = 〈α1,4, α3,4〉 + 〈α1,5, α3,4〉 + 〈α2,4, α3,4〉 + 〈α2,5, α3,4〉 + 〈α3,4, α3,4〉 + 〈α3,5, α3,4〉
= 1 + 0 + 1 + 0 + 2 + 1 = 5 6= 2 .

We conclude this section by carrying out, to the extent that it is possible, a discussion for ρP analogous to
the discussion of ρ and ρGP

in the previous section, B.2. Recall that

ρP =
∑

α∈R(nP )

α .

As noted above, the relevant characters α ∈ R(nP ) are not (typically) sums of simple characters in S(nP )
nor even linear combinations of such simple characters. However, the restrictions α|aP

, for α ∈ R(nP ) can

be written as linear combinations of elements in S(nP )|aP
, and the corresponding linear extensions α̃|aP

to

a that are zero on aGP
can be written as linear combinations of elements in ˜S(nP )|aP

⊂ a∨. Thus, although

it is not a priori clear that ρP ∈ ã∨P , we can consider ρ̃P |aP
, which is certainly in ã∨P , and use what we know

about bases for ã∨P to obtain formulas for ρ̃P |aP
.

We begin with the observation that when we restrict relevant characters in R(nP ) to aP , there is quite a
bit of “collapsing” and what is left has a structure similar to the relevant characters for slr+1(C).

Thus we partition R(nP ) as follows. For 1 ≤ k ≤ r and k + 1 ≤ k′ ≤ r + 1, let R(nP )k,k′ be all
αi,j ∈ R(nP ) such that mk−1 < i ≤ mk and mk′−1 < j ≤ mk′ . Then

R(nP ) =

r⊔
k=1

r+1⊔
k′=k+1

R(nP )k,k′ .

Note that the cardinality of R(nP )k,k′ is nk · nk′ . When restricting to aP , R(nP )k,k′ will “collapse,” i.e. for
all αi,j ∈ R(nP )k,k′ ,

αi,j |aP
≡ αmk,mk′ |aP

, so α̃i,j |aP
≡ ˜αmk,mk′ |aP

.

Denote this element of ã∨P by αP,k,k′ . Explicitly:

αP,k,k′ = ˜αmk,mk′ |aP
=

(
avg. of entries
in kth block

)
−
(

avg. of entries in
(k′)th block

)
.

We can now write ρ̃P |aP
as

ρ̃P |aP
=

∑
α∈R(nP )

α̃|aP
=

r∑
k=1

r+1∑
k′=k+1

∑
α∈R(nP )k,k′

α̃|aP
=

r∑
k=1

r+1∑
k′=k+1

nknk′ αP,k,k′ .
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Using the fact that
αP,k,k′ = αP,k + . . . + αP,k′−1 ,

arguments similar to those in the previous section, B.2, allow us to write ρ̃P |aP
in terms of elements αP,k of

the basis ˜S(nP )|aP
, as follows:

ρ̃P |aP
=

r∑
k=1

mk(n−mk)αP,k .

Recall from A.6 that we may write αP,k in terms of the dual basis S(nP )′ for ã∨P . Explicitly,

αP,k = α̃mk
|aP

= −
(

1
nk

)
α′mk−1

+
(

1
nk

+ 1
nk+1

)
α′mk

−
(

1
nk+1

)
α′mk+1

.

Again, using arguments similar to those in B.2, we use this formula to obtain

ρ̃P |aP
=

r∑
k=1

(nk + nk+1)α′mk
.

In particular, it is clear that

ρ̃P |aP
=

∑
α′∈S(nP )′

cα′ α
′ 6= 2

∑
α′∈S(nP )′

α′ ,

contradicting what one might naively suppose if one were to draw a false parallel with ρ and ρGP
.

As it turns out, ρ̃P |aP
= ρP . This is because ρP is orthogonal to all α ∈ S(nG), and S(nG) is a basis for

ã∨GP
, thus ρP ∈

(
ã∨GP

)⊥
= ã∨P . We emphasize that this is not obvious from working directly with ρP ; the

proof relies critically on the fact that 〈ρ, α〉 = 〈ρGP
, α〉 = 2 for all α ∈ S(nGP

), and this in turn is proven
using the structural similarities between a and aGP

; see 3.2 and B.2.

Thus we can write ρP nicely in terms of the basis ˜S(nP )|aP
= {αP,k : 1 ≤ k ≤ r} and its dual basis

S(nP )′ = {α′mk
: 1 ≤ k ≤ r}, as follows:

ρP =

r∑
k=1

mk(n−mk)αP,k =

r∑
k=1

(nk + nk+1)α′mk
.

From this we can show that, for α = αm`
∈ S(nP ), with 1 ≤ ` ≤ r,

〈ρP , α〉 =

r∑
k=1

(nk + nk+1)〈α′mk
, αm`

〉 = n` + n`+1 ,

which is not typically equal to 2.

20


	Preliminaries
	Characters of a
	Orthogonality
	Orthogonality of certain characters
	Orthogonal decomposition = GP + P

	Subspaces and Bases for a and a
	Orthogonal decomposition of a
	Orthogonal decomposition of a.
	Bases for a and a
	Bases for aP and aGP
	Bases for aGP and aP
	Bases for aGP
	Bases for aP

	Bases for aGP"0365aGP and aP"0365aP
	Bases for aGP"0365aGP
	Bases for aP"0365aP

	Summary of Bases
	Orthogonality of Characters in a
	Failure to prove the orthogonality of GP and P

	The ``half-trace'' 
	Formulas for the ``half-trace'' 
	That "426830A , "526930B =2 for all S(n) and an analogous statement for GP
	The analogous statement for P is false


