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Background and Motivation

Poincaré Series

Construct an automorphic form by averaging over a discrete
subgroup:

Pée(g) = ) fly-g)

yer
E.g. T a test function on $) = SI,(R)/SO(2), T'=S1,(Z).

For applications, may want to choose data f that is not smooth or
compactly supported.
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Subconvexity application

in dir. of RH, re: growth of {/L-functions on critical line

Good, Diaconu-Goldfeld, Diaconu-Garrett, Letang

data for Poincaré series not smooth or compactly supported

hindsight: data is a solution to a differential equation
(A—ANu =0

where A is the Laplacian on $, A € C, and 0 is a distribution.
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Differential equations viewpoint
Data for Poincaré series as solution to (A —Aju = 6.

Advantages to viewpoint

e characterize Pé,, as solution to corresp. automorphic
differential equation

e heuristically immediate automorphic spectral expansion!
e allows generalization to higher rank

e connection to eigenfunctions for pseudo-Laplacians

Lattice point counting identity (exact formula, not asymptotic)
e |attice points in symmetric space G/K, where G is complex

Eigenfunctions for pseudo-Laplacians

e mero. continuation of Eisenstein series (Colin de Verdiere)
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Free Space Solutions

Poincaré series and automorphic spectral expansions

Poincaré series from differential equation

free space

afc quotient space

$ = SL2(R)/SO(2)
higher rank: G/K
(A—?\)u — efree

spectral expansion for ufree

in zonal spherical fcns

Péufree

geometric description

SLa(Z)\$
MG/K
(A—Au = gof

spectral expansion for u2f

in cfms, Eis. series, residues

afc

= u

afc spectral expansion
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What is needed

spherical transform of HC and Berezin

global zonal spherical Sobolev theory

® gauges on groups

automorphic spectral theory

global automorphic Sobolev theory
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Explicit examples

Simplest interesting higher rank examples as explicitly as possible.

Let G be a complex, semi-simple Lie group with finite center, K its
maximal compact, I" a discrete subgroup (e.g. G = SL,(C),
K =SU(n), I'=SLa(Z[i]).)

e O =0 is Dirac delta

e solution u is fundamental solution for A — A
e app: lattice point counting

e 0 =Sy is integrate-over-shell
e app: pseudo-Laplacians
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Free Space Solutions

General set-up

G: complex semi-simple Lie group, K: maximal compact
G = NAK, g =n+ a+ ¢t Iwasawa decomp.

Y: set of roots of g with respect to a, £ positive roots
p= %Zaeﬁ My &, My: multiplicity of

ag the set of complex-valued linear functions on a
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Spherical transform /inversion of H-C and Berezin

X=K\G/K, Z=a*/W=a,

©p+iz, & € at, zonal spherical function with Casimir
eigenvalue Az = —(|&]* + |p|?)

spherical transform of bi-K-invariant f

THE) = | f0)Tpuicle) dg
inverse transform
T = | H() g (o) 2

where ¢(&) is the Harish-Chandra c-function and d¢, is the
usual Lebesgue measure on a* ~ R™.
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Fundamental Solution

Consider (A—A,)Y u, = &, where ve N, A\, =22 —|p?,z€ C.

Global zonal spherical Sobolev theory = 3 solution u,, unique in
Sobolev spaces.

Proposition

For integral v > dim(G/K)/2, u, is a continuous left-K-invariant
function on G/K with the following spectral expansion:

(—1)

wlol = | ogpramy Perselollelel 2

0]

NB: The condition on v is for uniform pointwise convergence. In
general, the spectral expansion converges in the Sobolev sense.
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Explicit formula for fundamental solution

Theorem

For an integer v > dim(G/K)/2 =n/2+ d, where d is the number
of positive roots, counted without multiplicities, and n = dim(a) is
the rank, u,(a) can be expressed in terms of a K-Bessel function

«(log a) llog a\ ¥~ 4 /2
H 2sinh(log a) ' 22 - Ky_q-n/2(zllogal)
OCEX+ g

In the odd rank case, with v =d + nTH

) (x(log(l) e_z\loga\
ueta) = 16_2[ 2sinh(afloga))  z
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Rank one fundamental solution

For G = SI,(C), the continuity is visible,

T.e—(2z—1]'r

/2
uzlar) = (2z—1)sinny “here ar = <e0 e*ofﬂ)
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Integrating along shells

Consider (A —A,)Yw, = Sy, where Sy, is the distribution that
integrates a function over the shell:

K- {a=exp(H): He€ a, with [H = b} - K /K
G=SI1,(C): spherical shell of radius b in hyperbolic 3-space

As before,
e J solution w,, unique in global zonal spherical Sobolev spaces
e spherical inversion = integral representation in terms of FSy,
e uniform pointwise convergence for v sufficiently large

Eigenfunctions of pseudo-Laplacians: weaker convergence desired:
e Hl-convergence (Sobolev topology, index 1)

e efcns for the Friedrichs extension of (a restriction of) the
Laplacian lie in the domain of the Fr. ext'n ¢ H1(X)

e v =1 = H!-convergence, regardless of dimG/K
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Explicit formula for solution

Theorem
Forv > (n+2d +1)/4, the solution w,(a) is
llog @ — H|>”“/2 sinh(a(H))
—_— Ky_1/»(zllog a—H|) - =
JIHI—b( z v-1/2121708 OC]-;:L sinh(a(log a))

In particular, whenn = dima* is odd, w,(a) is

J PV,nTH(Z| log a — H|) e~=lleg a—Hl sinh(x(H))
v .
[H|=b z?v—n it sinh(x(log a))

where Py(x) is a degree { polynomial, with explicit coefficients.



Free Space Solutions

Rank one solution

For G = SL»(C), with v = 1, ensuring H!-convergence,

) e 2% sinh(2rz) ifr<b
—sinh(b)

welar) = z sinh()

sinh(2bz) e 22 ifr>D
and, with v = 2, ensuring uniform pointwise convergence,

wo(a,) — 2sinh(b) e7*% ((1+2bz) cosh(2rz) — 2rzsinh(2rz))
z T - 3_7-
z3 sinh(r) ((1+ 2rz) cosh(2bz) — 2bzsinh(2bz))e 2=
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Winding-up

Average over T', discrete subgroup of G:

Pée(g) = Y fly-g)
ver
Example:
o Pé,, is solution to automorphic PDE: (A — A, )Yu3fc = §3f
e automorphic solution has automorphic spectral expansion

e lattice point counting in higher rank symmetric spaces
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Integrating along shells

Theorem
If the solution w, is of sufficient rapid decay, the Poincaré series
Pé,, converges absolutely and uniformly on compact sets, to a
continuous function of moderate growth, square-integrable modulo
I'. Moreover, it has an automorphic spectral expansion, converging
uniformly pointwise:

+ . . —
Jea e (le‘:b e UEM) TTsinh(aH) dH) D (xo) - D
= (=1)Y (I&R +22)Y

where {® ¢} denotes a suitable spectral family of spherical
automorphic forms (cusp forms, Eisenstein series, and residues of
Eisenstein series) and \s = —(|&> + |p[2) is the Casimir
eigenvalue of Q.
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Rank one: G = SL,(C), T'=SL,(Z[i]), v=2
Pé,(g) = 2sinh(b)/z3x

Z ((1+ 2bz) cosh(20(yg)z) — 20(yg)zsinh(2rz)) e 2b=

= sinh((vg))
Z ((1 + 20(yg)z) cosh(2bz) — 2bz sinh(2bz))e‘20(y9)z>
W sinh(o(vg)]

where o(g) is the geodesic distance from gK to xg =1 - K.
Spectral expansion:

Pe.= Y sin(2bty) - f(xo) - f Do(xo) - Do

¢ e 2trsinh(b) (17 + 22)2 (22 — 1)2

dt

N 1 J'OO sin(2bt) 'E%—it(XO) . E%—O—it

2tsinh(b)(t2 4 z2)?

where —(t2 4 1) and —(t? + ) are the eigenvalues of f and Eiie

3 .
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Convergence of Poincaré series?

Regardless of the convergence of the Poincaré series, the solution
wifc to the automorphic differential equation

e exists
e is unique in global automorphic Sobolev spaces

e has the given spectral expansion, converging in a global
automorphic Sobolev space.

If desired, uniform pointwise convergence of the spectral expansion
can be obtained by choosing v sufficiently large.

The difficulty, even in the simplest possible higher rank cases,
namely G complex of odd rank, of ascertaining whether w, is of
sufficiently rapid decay along the walls of the Weyl chambers,
where [ [sinh(x(log a)) blows up, is reason to question whether
the explicit “geometric” Poincaré series representation of W is
actually needed in a given application or whether the automorphic
spectral expansion suffices.
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