

Designing Poincaré series for number theoretic applications

Amy DeCelles

University of St. Thomas

January 15, 2014

Outline

Background and Motivation

Free Space Solutions

Poincaré series and automorphic spectral expansions

Poincaré Series

Construct an automorphic form by averaging over a discrete subgroup:

$$\text{Pé}_f(g) = \sum_{\gamma \in \Gamma} f(\gamma \cdot g)$$

E.g. f a test function on $\mathfrak{H} = \text{SL}_2(\mathbb{R})/\text{SO}(2)$, $\Gamma = \text{SL}_2(\mathbb{Z})$.

For applications, may want to choose data f that is not smooth or compactly supported.

Subconvexity application

- in dir. of RH, re: growth of ζ /L-functions on critical line
- Good, Diaconu-Goldfeld, Diaconu-Garrett, Letang
- data for Poincaré series not smooth or compactly supported
- hindsight: data is a solution to a differential equation

$$(\Delta - \lambda)u = \theta$$

where Δ is the Laplacian on \mathfrak{H} , $\lambda \in \mathbb{C}$, and θ is a distribution.

Differential equations viewpoint

Data for Poincaré series as solution to $(\Delta - \lambda)u = \theta$.

Advantages to viewpoint

- characterize $P_e u$ as solution to corresp. automorphic differential equation
- heuristically immediate automorphic spectral expansion!
- allows generalization to higher rank
- connection to eigenfunctions for pseudo-Laplacians

Lattice point counting identity (exact formula, not asymptotic)

- lattice points in symmetric space G/K , where G is complex

Eigenfunctions for pseudo-Laplacians

- mero. continuation of Eisenstein series (Colin de Verdiere)

Poincaré series from differential equation

free space	afc quotient space
$\mathfrak{H} = \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}(2)$	$\mathrm{SL}_2(\mathbb{Z}) \backslash \mathfrak{H}$
higher rank: G/K	$\Gamma \backslash G/K$
$(\Delta - \lambda)u = \theta^{\text{free}}$	$(\Delta - \lambda)u = \theta^{\text{afc}}$
spectral expansion for u^{free} in zonal spherical fcns	spectral expansion for u^{afc} in cfms, Eis. series, residues
$\text{P\'{e}}_{u^{\text{free}}} = u^{\text{afc}}$	
geometric description	afc spectral expansion

What is needed

- spherical transform of HC and Berezin
- global zonal spherical Sobolev theory
- gauges on groups
- automorphic spectral theory
- global automorphic Sobolev theory

Explicit examples

Simplest interesting higher rank examples as explicitly as possible.

Let G be a complex, semi-simple Lie group with finite center, K its maximal compact, Γ a discrete subgroup (e.g. $G = \mathrm{SL}_n(\mathbb{C})$, $K = \mathrm{SU}(n)$, $\Gamma = \mathrm{SL}_n(\mathbb{Z}[i])$.)

- $\theta = \delta$ is Dirac delta
 - solution u is fundamental solution for $\Delta - \lambda$
 - app: lattice point counting
- $\theta = S_b$ is integrate-over-shell
 - app: pseudo-Laplacians

Outline

Background and Motivation

Free Space Solutions

Poincaré series and automorphic spectral expansions

General set-up

- G : complex semi-simple Lie group, K : maximal compact
- $G = NAK$, $\mathfrak{g} = \mathfrak{n} + \mathfrak{a} + \mathfrak{k}$ Iwasawa decomp.
- Σ : set of roots of \mathfrak{g} with respect to \mathfrak{a} , Σ^+ positive roots
- $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m_\alpha \alpha$, m_α : multiplicity of α
- $\mathfrak{a}_{\mathbb{C}}^*$ the set of complex-valued linear functions on \mathfrak{a}

Spherical transform/inversion of H-C and Berezin

- $X = K \backslash G / K$, $\Xi = \mathfrak{a}^* / W \approx \mathfrak{a}_+$
- $\varphi_{\rho+i\xi}$, $\xi \in \mathfrak{a}^+$, zonal spherical function with Casimir eigenvalue $\lambda_\xi = -(|\xi|^2 + |\rho|^2)$
- spherical transform of bi- K -invariant f

$$\mathcal{F}f(\xi) = \int_G f(g) \overline{\varphi}_{\rho+i\xi}(g) dg$$

- inverse transform

$$\mathcal{F}^{-1}f = \int_{\Xi} f(\xi) \varphi_{\rho+i\xi} |\mathbf{c}(\xi)|^{-2} d\xi$$

where $\mathbf{c}(\xi)$ is the Harish-Chandra \mathbf{c} -function and $d\xi$ is the usual Lebesgue measure on $\mathfrak{a}^* \approx \mathbb{R}^n$.

Fundamental Solution

Consider $(\Delta - \lambda_z)^\nu u_z = \delta$, where $\nu \in \mathbb{N}$, $\lambda_z = z^2 - |\rho|^2$, $z \in \mathbb{C}$.

Global zonal spherical Sobolev theory $\Rightarrow \exists$ solution u_z , unique in Sobolev spaces.

Proposition

For integral $\nu > \dim(G/K)/2$, u_z is a continuous left- K -invariant function on G/K with the following spectral expansion:

$$u_z(g) = \int_{\Xi} \frac{(-1)^\nu}{(|\xi|^2 + z^2)^\nu} \varphi_{\rho+i\xi}(g) |\mathbf{c}(\xi)|^{-2} d\xi$$

NB: The condition on ν is for uniform pointwise convergence. In general, the spectral expansion converges in the Sobolev sense.

Explicit formula for fundamental solution

Theorem

For an integer $\nu > \dim(G/K)/2 = n/2 + d$, where d is the number of positive roots, counted without multiplicities, and $n = \dim(\mathfrak{a})$ is the rank, $u_z(\mathfrak{a})$ can be expressed in terms of a K-Bessel function

$$\prod_{\alpha \in \Sigma^+} \frac{\alpha(\log \mathfrak{a})}{2 \sinh(\log \mathfrak{a})} \cdot \left(\frac{|\log \mathfrak{a}|}{2z} \right)^{\nu-d-n/2} \cdot K_{\nu-d-n/2}(z|\log \mathfrak{a}|)$$

In the odd rank case, with $\nu = d + \frac{n+1}{2}$,

$$u_z(\mathfrak{a}) = \prod_{\alpha \in \Sigma^+} \frac{\alpha(\log \mathfrak{a})}{2 \sinh(\alpha(\log \mathfrak{a}))} \cdot \frac{e^{-z|\log \mathfrak{a}|}}{z}$$

Rank one fundamental solution

For $G = \mathrm{SL}_2(\mathbb{C})$, the continuity is visible,

$$u_z(a_r) = \frac{r e^{-(2z-1)r}}{(2z-1) \sinh r} \quad \text{where} \quad a_r = \begin{pmatrix} e^{r/2} & 0 \\ 0 & e^{-r/2} \end{pmatrix}$$

Integrating along shells

Consider $(\Delta - \lambda_z)^\nu w_z = S_b$, where S_b is the distribution that integrates a function over the shell:

$$K \cdot \{a = \exp(H) : H \in \mathfrak{a}_+ \text{ with } |H| = b\} \cdot K / K$$

$G = \text{SL}_2(\mathbb{C})$: spherical shell of radius b in hyperbolic 3-space

As before,

- \exists solution w_z , unique in global zonal spherical Sobolev spaces
- spherical inversion \Rightarrow integral representation in terms of \mathcal{FS}_b
- uniform pointwise convergence for ν sufficiently large

Eigenfunctions of pseudo-Laplacians: *weaker* convergence desired:

- H^1 -convergence (Sobolev topology, index 1)
- efcns for the Friedrichs extension of (a restriction of) the Laplacian lie in the domain of the Fr. ext'n $\subset H^1(X)$
- $\nu = 1 \Rightarrow H^1$ -convergence, regardless of $\dim G / K$

Explicit formula for solution

Theorem

For $\nu > (n + 2d + 1)/4$, the solution $w_z(a)$ is

$$\int_{|\mathsf{H}|=b} \left(\frac{|\log a - \mathsf{H}|}{z} \right)^{\nu-n/2} K_{\nu-1/2}(z|\log a - \mathsf{H}|) \prod_{\alpha \in \Sigma^+} \frac{\sinh(\alpha(\mathsf{H}))}{\sinh(\alpha(\log a))} d\mathsf{H}$$

In particular, when $n = \dim a^*$ is odd, $w_z(a)$ is

$$\int_{|\mathsf{H}|=b} \frac{P_{\nu-\frac{n+1}{2}}(z|\log a - \mathsf{H}|) e^{-z|\log a - \mathsf{H}|}}{z^{2\nu-n}} \prod_{\alpha \in \Sigma^+} \frac{\sinh(\alpha(\mathsf{H}))}{\sinh(\alpha(\log a))} d\mathsf{H}$$

where $P_\ell(x)$ is a degree ℓ polynomial, with explicit coefficients.

Rank one solution

For $G = \mathrm{SL}_2(\mathbb{C})$, with $\nu = 1$, ensuring H^1 -convergence,

$$w_z(a_r) = \frac{-\sinh(b)}{z \sinh(r)} \cdot \begin{cases} e^{-2bz} \sinh(2rz) & \text{if } r < b \\ \sinh(2bz) e^{-2rz} & \text{if } r > b \end{cases}$$

and, with $\nu = 2$, ensuring uniform pointwise convergence,

$$w_z(a_r) = \frac{2 \sinh(b)}{z^3 \sinh(r)} \cdot \begin{cases} e^{-2bz} ((1 + 2bz) \cosh(2rz) - 2rz \sinh(2rz)) \\ ((1 + 2rz) \cosh(2bz) - 2bz \sinh(2bz)) e^{-2rz} \end{cases}$$

Outline

Background and Motivation

Free Space Solutions

Poincaré series and automorphic spectral expansions

Winding-up

Average over Γ , discrete subgroup of G :

$$\text{Pé}_f(g) = \sum_{\gamma \in \Gamma} f(\gamma \cdot g)$$

Example:

- Pé_{u_z} is solution to automorphic PDE: $(\Delta - \lambda_z)^\nu u_z^{\text{afc}} = \delta^{\text{afc}}$
- automorphic solution has automorphic spectral expansion
- lattice point counting in higher rank symmetric spaces

Integrating along shells

Theorem

If the solution w_z is of sufficient rapid decay, the Poincaré series \mathcal{P}_{ν_z} converges absolutely and uniformly on compact sets, to a continuous function of moderate growth, square-integrable modulo Γ . Moreover, it has an automorphic spectral expansion, converging uniformly pointwise:

$$\int_{\Xi}^{\oplus} \frac{\pi^+(\rho)}{\pi^+(-i\xi)} \left(\int_{|\mathcal{H}|=b} e^{-i\langle \xi, \mathcal{H} \rangle} \prod \sinh(\alpha \mathcal{H}) d\mathcal{H} \right) \overline{\Phi}_{\xi}(x_0) \cdot \Phi_{\xi}$$

where $\{\Phi_{\xi}\}$ denotes a suitable spectral family of spherical automorphic forms (cusp forms, Eisenstein series, and residues of Eisenstein series) and $\lambda_{\xi} = -(|\xi|^2 + |\rho|^2)$ is the Casimir eigenvalue of Φ_{ξ} .

Rank one: $G = \mathrm{SL}_2(\mathbb{C})$, $\Gamma = \mathrm{SL}_2(\mathbb{Z}[i])$, $\nu = 2$

$$\mathrm{Pé}_z(g) = 2 \sinh(b)/z^3 \times$$

$$\left(\sum_{\sigma(\gamma g) < b} \frac{((1 + 2bz) \cosh(2\sigma(\gamma g)z) - 2\sigma(\gamma g)z \sinh(2rz)) e^{-2bz}}{\sinh(\sigma(\gamma g))} \right. \\ \left. + \sum_{\sigma(\gamma g) > b} \frac{((1 + 2\sigma(\gamma g)z) \cosh(2bz) - 2bz \sinh(2bz)) e^{-2\sigma(\gamma g)z}}{\sinh(\sigma(\gamma g))} \right)$$

where $\sigma(g)$ is the geodesic distance from gK to $x_0 = 1 \cdot K$.

Spectral expansion:

$$\mathrm{Pé}_z = \sum_{f \in \mathrm{GL}_2 \text{ cfm}} \frac{\sin(2bt_f) \cdot \bar{f}(x_0) \cdot f}{2t_f \sinh(b)(t_f^2 + z^2)^2} + \frac{\overline{\Phi}_0(x_0) \cdot \Phi_0}{(z^2 - \frac{1}{4})^2}$$

$$+ \frac{1}{4\pi} \int_{-\infty}^{\infty} \frac{\sin(2bt) \cdot E_{\frac{1}{2}-it}(x_0) \cdot E_{\frac{1}{2}+it}}{2t \sinh(b)(t^2 + z^2)^2} dt$$

where $-(t_f^2 + \frac{1}{4})$ and $-(t^2 + \frac{1}{4})$ are the eigenvalues of f and $E_{\frac{1}{2}+it}$.

Convergence of Poincaré series?

Regardless of the convergence of the Poincaré series, the solution w_z^{afc} to the automorphic differential equation

- exists
- is unique in global automorphic Sobolev spaces
- has the given spectral expansion, converging in a global automorphic Sobolev space.

If desired, uniform pointwise convergence of the spectral expansion can be obtained by choosing ν sufficiently large.

The difficulty, even in the simplest possible higher rank cases, namely G complex of odd rank, of ascertaining whether w_z is of sufficiently rapid decay along the walls of the Weyl chambers, where $\prod \sinh(\alpha(\log a))$ blows up, is reason to question whether the explicit “geometric” Poincaré series representation of w_z^{afc} is actually needed in a given application or whether the automorphic spectral expansion suffices.

Acknowledgements

This talk includes results from the author's PhD thesis, completed under the supervision of Professor Paul Garrett, whom the author thanks warmly for many helpful conversations. The author was partially supported by the Doctoral Dissertation Fellowship from the Graduate School of the University of Minnesota, by NSF grant DMS-0652488, and by a faculty research grant from the University of St. Thomas.

For a preprint, see arxiv:1401.1780 [math.NT] or visit

<http://personal.stthomas.edu/dece4515>