Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Further Applications

Eigenvalues of Pseudo-Laplacians and Compact Periods of Eisenstein Series

Amy DeCelles

University of St. Thomas St. Paul, Minnesota

August 14, 2015

Amy DeCelles

Introduction

History

Motivating Example

Bombieri-Garrett Theorems

Further Applications

History

Hilbert-Polya: nontrivial zeros ρ of $\zeta(s) \stackrel{?}{\Rightarrow}$ eigenvalues $\lambda_{\rho} = \rho(\rho - 1)$ of a self-adjoint operator $\stackrel{\text{would}}{\Rightarrow} \sim \text{RH}$

History

Series Amy DeCelles

Eigenvalues of Pseudo-

> Laplacians and Compact Periods of Eisenstein

Introduction

History

Motivating Example

Bombieri-Garrett Theorems

Further Applications **Hilbert-Polya**: nontrivial zeros ρ of $\zeta(s) \stackrel{?}{\Rightarrow}$ eigenvalues $\lambda_{\rho} = \rho(\rho - 1)$ of a self-adjoint operator $\stackrel{\text{would}}{\Rightarrow} \sim \text{RH}$

- Haas, 1977: zeros of ζ among s-values for purported eigenvalues $\lambda_s = s(s-1)$ of Δ on $SL_2(\mathbb{Z}) \setminus \mathfrak{H}$
- RH within reach?!

History

Series Amy DeCelles

Eigenvalues of Pseudo-

> Laplacians and Compact Periods of Eisenstein

Introduction

History

Motivating Example

Bombieri-Garrett Theorems

Further Application **Hilbert-Polya**: nontrivial zeros ρ of $\zeta(s) \stackrel{?}{\Leftrightarrow}$ eigenvalues $\lambda_{\rho} = \rho(\rho - 1)$ of a self-adjoint operator $\stackrel{\text{would}}{\Rightarrow} \sim \text{RH}$

- Haas, 1977: zeros of ζ among s-values for purported eigenvalues $\lambda_s = s(s-1)$ of Δ on $SL_2(\mathbb{Z}) \setminus \mathfrak{H}$
- RH within reach?!
- Hejhal: Haas' methods flawed
- Hejhal (1981), Colin de Verdière (1981, 1983)
- Garrett, Bombieri (current)
- D (current)

Amy DeCelles

Introduction

History

Motivating Example

Bombieri-Garrett Theorems

Further Applications

Pseudo-Laplacians permit non-smoothness in eigenfunctions

Let
$$X = SL_2(\mathbb{Z}) \setminus \mathfrak{H}$$
, $\Delta = y^2 (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})$.

- Eigenfunctions for Δ must be smooth.
- Eigenfunctions for pseudo-Laplacians not nec. smooth.
 - CdV: mero. cont. of Eis. series
 - Δ_{α} on Lax-Phillips space
 - Truncations $\wedge^{\alpha}E_{s}$ with $c_{P}(E_{s})(ia) = a^{s} + c_{s}a^{1-s} = 0$, $c_{s} = \xi(2s-1)/\xi(2s)$, are eigenfunctions.

Amy DeCelles

L

Introduction

History

Motivating Example

Bombieri-Garrett Theorems

Further Applications

Pseudo-Laplacians permit non-smoothness in eigenfunctions

Let
$$X = SL_2(\mathbb{Z}) \setminus \mathfrak{H}$$
, $\Delta = y^2 (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})$.

- Eigenfunctions for Δ must be smooth.
- Eigenfunctions for pseudo-Laplacians not nec. smooth.
 - CdV: mero. cont. of Eis. series
 - Δ_a on Lax-Phillips space
 - Truncations $\wedge^{\alpha}E_s$ with $c_P(E_s)(ia) = a^s + c_sa^{1-s} = 0$, $c_s = \xi(2s-1)/\xi(2s)$, are eigenfunctions.
- Construct Δ_{ω} to overlook non-smoothness at corner $\omega = e^{2\pi i/6}$ of fundamental domain.
 - Legitimize Haas' purported eigenvalues?

Amy DeCelles

Introduction

History

Motivating Example

Bombieri-Garrett Theorems

Further Applications

Legitimize Haas' Eigenvalues?

With

- + $\delta=\delta^{\text{afc}}_{\omega}$, automorphic Dirac delta distribution at $\omega,$
- Δ_{ω} , restriction of Δ to $C^{\infty}_{c}(X) \cap \ker(\delta)$,
- $\widetilde{\Delta}_{\omega}$, Friedrichs extension of Δ_{ω} (canonical, self-adjoint),

Amy DeCelles

Introduction

History

Motivating Example

Bombieri-Garrett Theorems

Further Applications

Legitimize Haas' Eigenvalues?

With

- $\delta=\delta_{\omega}^{\text{afc}}$, automorphic Dirac delta distribution at $\omega,$
- Δ_{ω} , restriction of Δ to $C^{\infty}_{c}(X) \cap \ker(\delta)$,
- $\widetilde{\Delta}_{\omega}$, Friedrichs extension of Δ_{ω} (canonical, self-adjoint), Then, for u in the domain of $\widetilde{\Delta}_{\omega}$,

$$(\widetilde{\Delta}_{\omega} - \lambda)\mathfrak{u} = 0 \quad \Longleftrightarrow \quad (\Delta - \lambda)\mathfrak{u} = \text{ const.} \cdot \delta$$

Amy DeCelles

Introduction

History Motivating Example

Bombieri-Garrett Theorems

Further Applications

Legitimize Haas' Eigenvalues?

With

- + $\delta=\delta^{\text{afc}}_{\omega}$, automorphic Dirac delta distribution at $\omega,$
- Δ_{ω} , restriction of Δ to $C^{\infty}_{c}(X) \cap \ker(\delta)$,
- $\widetilde{\Delta}_{\omega}$, Friedrichs extension of Δ_{ω} (canonical, self-adjoint), Then, for u in the domain of $\widetilde{\Delta}_{\omega}$,

$$(\widetilde{\Delta}_{\omega} - \lambda)\mathfrak{u} = 0 \iff (\Delta - \lambda)\mathfrak{u} = \text{const.} \cdot \delta$$

Using global automorphic Sobolev theory:

- Construct solutions to distributional differential equation using automorphic spectral expansions.
- But no solution will lie in the domain of $\widetilde{\Delta}_{\omega}$.
- Discrete spectrum of $\widetilde{\Delta}_{\omega}$ is **empty**.

Amy DeCelles

Introduction

History Motivating

Example

Bombieri-Garrett Theorems

Further Applications

Solutions are not Eigenfunctions

Global Automorphic Sobolev Spaces:

- For $\ell \ge 0$, $H^{\ell}(X)$ is the closure of $C_c^{\infty}(X)$ with respect to the topology induced by $\langle f, g \rangle_{\ell} = \langle (1-\Delta)^{\ell} f, g \rangle_{L^2}$.
- $H^{-\ell}(X)$ is the Hilbert space dual of $H^{\ell}(X)$.
- $H^{\ell}(X) \subset H^{\ell-1}(X)$ and $(1-\Delta): H^{\ell}(X) \xrightarrow{\sim} H^{\ell-2}(X)$

Dirac delta distribution: $\delta \in H^{\ell}(X)$ only for $\ell < -1$. Thus, solutions of $(\Delta - \lambda)u = \delta$ lie in $H^{\ell}(X)$ only for $\ell < 1$.

An unbounded operator on a Hilbert space \mathcal{H} is a linear map from a subspace (the **domain** of the operator) to \mathcal{H} .

- Restrictions of Δ , e.g. Δ_{ω} , unbdd ops on $L^2(X)$.
- By Friedrichs' construction, $Dom(\widetilde{\Delta}_{\omega}) \subset H^1(X)$.

Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Vanishing Theorem Interlacing Theorem

Further Applications

Bombieri-Garrett Theorems

• CdV's suggestion: replace δ by θ , a projection of δ to the non-cuspidal part of the automorphic spectrum.

Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Vanishing Theorem Interlacing Theorem

Further Applications

Bombieri-Garrett Theorems

- CdV's suggestion: replace δ by θ , a projection of δ to the non-cuspidal part of the automorphic spectrum.
- Bombieri-Garrett
 - 1 Existence of $\widetilde{\Delta}_{\theta}$ -eigenvalue $\lambda_w = w(w-1)$ with $\operatorname{Re}(w) = \frac{1}{2}$ does imply vanishing of zeta function at w.

Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Vanishing Theorem Interlacing Theorem

Further Applications

Bombieri-Garrett Theorems

- CdV's suggestion: replace δ by θ , a projection of δ to the non-cuspidal part of the automorphic spectrum.
- Bombieri-Garrett
 - 1 Existence of $\widetilde{\Delta}_{\theta}$ -eigenvalue $\lambda_w = w(w-1)$ with $\operatorname{Re}(w) = \frac{1}{2}$ does imply vanishing of zeta function at w.
 - 2 Interlacing of $\widetilde{\Delta}_{\theta}\text{-eigenvalues}$ with zeros of constant term at fixed height.

Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Vanishing Theorem Interlacing Theorem

Further Applications

Automorphic Spectral Expansions

Analogue of Fourier inversion: automorphic spectral expansion in terms of eigenfunctions for Laplacian.

Example:
$$SL_2(\mathbb{Z})\setminus\mathfrak{H}, \ \Delta = y^2(\frac{d^2}{dx^2} + \frac{d^2}{dy^2})$$

 $v \stackrel{\text{Sob}}{=} \sum_{F} \langle v, F \rangle \cdot F + \langle v, \Phi_0 \rangle \cdot \Phi_0 + \frac{1}{4\pi i} \int_{\frac{1}{2} + i\mathbb{R}} \langle v, E_s \rangle \cdot E_s \ ds$

- F ranges over an orthonormal basis of cusp forms
- Φ_0 is the constant automorphic form with unit $L^2\mbox{-norm}$
- E_s is the real analytic Eisenstein series

Can view such formulas as "pre-trace formulas."

Amy DeCelles

Vanishing Theorem

$\Theta = \sum_{F} \Theta(\overline{F}) \cdot F + \Theta(\overline{\Phi}_{0}) \cdot \Phi_{0} + \frac{1}{4\pi i} \int_{\frac{1}{2} + i\mathbb{R}} \Theta(E_{1-s}) \cdot E_{s} \, ds$

Constructing the Pseudo-Laplacian

Let Θ be a compactly supported distribution on $X = SL_2(\mathbb{Z}) \setminus \mathfrak{H}$.

Following Colin de Verdiere (1983),

$$\theta = \operatorname{Proj}_{\operatorname{nc}}\Theta = \Theta(\overline{\Phi}_0) \cdot \Phi_0 + \frac{1}{4\pi i} \int_{\frac{1}{2} + i\mathbb{R}} \Theta(\mathsf{E}_{1-s}) \cdot \mathsf{E}_s \, \mathrm{d}s$$

Restrict Δ to $L^2_{nc}(X) \cap C^{\infty}_c(X) \cap \ker(\theta)$, and let $\widetilde{\Delta}_{\theta}$ be its Friedrichs extension. Then, for \mathfrak{u} in the domain of $\widetilde{\Delta}_{\theta}$,

$$(\widetilde{\Delta}_{\theta} - \lambda_{w})u = 0 \quad \iff \quad (\Delta - \lambda_{w})u = (\text{const}) \cdot \theta$$

Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Vanishing Theorem Interlacing Theorem

Further Applications

Vanishing of Periods

Theorem (Bombieri-Garrett)

Let θ , Δ_{θ} , and $\overline{\Delta}_{\theta}$ be as above. Suppose θ lies in $H^{-1}(X)$ and θ is real, in the sense that $\theta(\overline{\phi}) = \overline{\theta(\phi)}$ for all $\phi \in C_c^{\infty}(X)$. Then the compact period θE_w vanishes when $\lambda_w = w(w-1)$ is an eigenvalue for $\widetilde{\Delta}_{\theta}$ with $\operatorname{Re}(w) = \frac{1}{2}$.

Note

Hardy-Littlewood 1918 $\Rightarrow \theta = \text{Proj}_{nc} \delta_{\omega}^{afc}$ satisfies the hypotheses. Here: $\theta E_s = \zeta_{\mathbb{Q}(\omega)}(s)/\zeta(2s) = \zeta(s)L(s,\chi)/\zeta(2s)$.

Corollary

Let $\theta = \operatorname{Proj}_{\mathsf{nc}} \delta^{\mathsf{afc}}_{\omega}$. If $\lambda_w = w(w-1)$ is an eigenvalue for $\widetilde{\Delta}_{\theta}$ with $\operatorname{Re}(w) = \frac{1}{2}$, then $\zeta_{\mathbb{Q}(\omega)}(w) = 0$.

Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Vanishing Theorem

Interlacing Theorem

Further Applications

How Many Zeros?

With
$$\lambda_w = w(w-1)$$
 an eigenvalue for $\widetilde{\Delta}_{\theta}$.

Have shown:

• w's on the critical line \subset zeros of zeta function Hope: w's account for

- all zeros of zeta? (No: Epstein zetas.)
- many zeros of zeta? (Not clear.)

If Montgomery's Pair Correlation Conjecture is true,

- at most a **positive fraction** of zeros of zeta,
- because they interlace with zeros of $c_P(\mathsf{E}_s)(\mathfrak{i}\mathfrak{a})=\mathfrak{a}^s+c_s\mathfrak{a}^{1-s} \text{ on the critical line.}$

Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Vanishing Theorem

Interlacing Theorem

Further Applications

Lax-Phillips Discretization

Lax-Phillips space: for
$$\alpha\gg 1$$

 $L^2(X)_{\mathfrak{a}} \hspace{.1 in} = \hspace{.1 in} \{ f \in L^2(X) \hspace{.1 in} : \hspace{.1 in} c_P \hspace{.1 in} f(z) = 0 \hspace{.1 in} \text{when} \hspace{.1 in} \text{Im}(z) \geqslant \mathfrak{a} \}$

Let $\Delta_{\mathfrak{a}} = \Delta|_{L^2(X)_{\mathfrak{a}} \cap C^{\infty}_{\mathfrak{c}}(X)}$ and $\widetilde{\Delta}_{\mathfrak{a}}$ its Friedrichs extension.

$L^2(X)_{\alpha}$ decomposes discretely:

- Orthogonal basis of $\widetilde{\Delta}_{\alpha}$ -eigenfunctions:
 - cuspforms
 - truncated Eisenstein series $\wedge^{\alpha}\mathsf{E}_{s}$ with $a^{s}+c_{s}a^{1-s}=0.$
- Parametrize eigenvalues of non-cuspidal discrete spectrum: $\{\lambda_{s_j}=s_j(s_j-1)\,:\,\alpha^{s_j}+c_{s_j}\alpha^{1-s_j}=0\}_{0\leqslant j\in\mathbb{Z}}$

Key: Eigenfunctions for $\widetilde{\Delta}_{\theta}$ lie in the non-cuspidal part of $L^2(X)_{\mathfrak{a}}$, so have expansions in terms of $\wedge^{\mathfrak{a}} E_s$'s.

Interlacing

Series Amy DeCelles

Eigenvalues of Pseudo-

> Laplacians and Compact Periods of Eisenstein

Introduction

Bombieri-Garrett Theorems

Vanishing Theorem

Theorem

Further Applications

Theorem (Bombieri-Garrett, Interlacing)

With Θ , θ , $\widetilde{\Delta}_{\theta}$ and $\widetilde{\Delta}_{a}$ as above, if a is chosen so that (1) supp(Θ) lies below Im(z) = a and (2) $\theta E_{s_j} \neq 0$ for any j, then, between any two adjacent parameters s_{j_1} and s_{j_2} on the critical line there is at most one parameter w corresponding to an eigenvalue $\lambda_w = w(w-1)$ of $\widetilde{\Delta}_{\theta}$.

Corollary

Let $\theta = \operatorname{Proj}_{nc} \delta_{\omega}^{afc}$. Under Montgomery's Pair Correlation Conjecture, at most a proper fraction of the $\widetilde{\Delta}_{\theta}$ -eigenvalue parameters appear among the zeros of the Riemann zeta function.

Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Further Applications

GL₃ Automorphic L-functions

- GL₃ automorphic L-functions arise as compact periods of GL₃ cuspidal data Eisenstein series.
- Theorem (D.) Vanishing of compact periods of GL₃ cuspidal data Eisenstein series at *w*-values on the critical line corresponding to eigenvalues (if any) of suitable pseudo-Laplacian.
- Theorem (D.) Interlacing with discrete spectrum of pseudo-Laplacian on Lax-Phillips space.
- H⁻¹-condition on period distribution: condition on the second moment of period.
- Given suitable moment bound, prove vanishing of GL_3 automorphic L-functions?

Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Further Applications

Quaternion Algebra Zeta Functions

Zeta functions for quaternion algebras also arise as compact periods of Eisenstein series.

Quaternion algebra B over k, split over quadratic $\ell/k,$

- H is copy of B^\times in $G=GL_2(\ell)$
- $\Theta_{H}f = \int_{ZH_{k} \setminus H_{\mathbb{A}_{k}}} f(h) dh$

•
$$\Theta_{\mathrm{H}} \, \mathrm{E}_{\mathrm{s}} = (\mathrm{const}) \times \frac{\xi_{\mathrm{B}}(2\mathrm{s})}{\xi_{\ell}(2\mathrm{s})}$$

Vanishing and interlacing should be accessible using similar methods.

Amy DeCelles

Introduction

Bombieri-Garrett Theorems

Further Applications Thank you for your attention!