
Zeros of Zeta
Functions and
Eigenvalues of

Pseudo-
Laplacians

Amy DeCelles

Introduction

Sobolev
Theory &c.

Positive
Results

Zeros of Zeta Functions and
Eigenvalues of Pseudo-Laplacians

Amy DeCelles

University of St. Thomas

September 20, 2014



Zeros of Zeta
Functions and
Eigenvalues of

Pseudo-
Laplacians

Amy DeCelles

Introduction

Zeros and
eigenvalues

Constructing
suitable
operators

Sobolev
Theory &c.

Positive
Results

Backstory

• Haas (1977) Zeros of zeta appear among parameter
values {s : λs = s(s− 1)} for purported eigenvalues λs of
∆ on SL2(Z)\H

• RH within reach?!

• Hejhal: Haas’ methods flawed

• Hejhal (1981), Colin de Verdière (1981, 1983)

• Garrett, Bombieri (current)
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Zeros of zeta functions and
eigenvalues of self-adjoint

operators

Goal (following Hilbert and Polya): produce zeros of zeta
functions (or other compact periods) among parameters w for
eigenvalues λw = w(w− 1) of self-adjoint operators.

Theorem (Rough Statement)

If λw = w(w− 1) is an eigenvalue of a (carefully constructed)
self-adjoint operator, “∆̃θ”, then the period θEw vanishes
when w is on the critical line, i.e.

{w ∈ 1
2 + iR : λw = w(w− 1) is an eigenvalue for ∆̃θ}

⊂ {s : θEs = 0}
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Zeros of Dedekind Zeta Function

In particular: θ = δafcz0 , with z0 = ω.

• Then θEs = ζQ(ω)(s)/ζ(2s)

• In critical strip: θEs = 0 ⇐⇒ ζQ(ω) = 0

• Construct (?) suitable “∆̃θ” with non-empty (large!?)
discrete spectrum
would⇒ Large subset of zeros of ζQ(ω) on the critical line!

Retrospect:

• Haas’ error: failure to distinguish between ∆ and “∆̃θ”

• Zeros of ζQ(ω)(s) = ζ(s)L(s,χ) appeared among the
parameter values for his purported eigenvalues of ∆.
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What is ∆̃θ?

The operator ∆̃θ will be

• the Friedrichs extension (necessarily self-adjoint)

• of a suitable restriction ∆θ

• of the Laplacian ∆ on SL2(Z)\H

Given θ, want to choose ∆θ such that:

(∆̃θ − λw)u = 0
??⇐⇒ (∆− λw)u = (const) · θ

• Use “engineering math” to find solutions!

• But such solutions may not lie in the domain of ∆̃θ!

• For example, θ = δafcz0 (CdV)

To clarify, need details of Friedrichs extension and global
automorphic Sobolev theory.
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Simplest Case: δ on R

Here ∆ = d2

dx2
, λw = 4π2w2, θ = δ, so (∆− λw)u = θ is

( d
2

dx2
− 4π2w2)u = δ

Apply a Fourier transform to both sides:

(−4π2ξ2 − 4π2w2)F(u) = F(δ) = 1

Division gives Fourier coefficients for u. Fourier inversion:

u(x) =

∫
R
Fu(ξ) e2πiξx dξ =

−1

4π2

∫
R

e2πiξx

ξ2 +w2
dξ

=
−e2πw|x|

4πw
(Re(w) > 0)
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Compactly supported θ on R

For θ compactly supported: ( d
2

dx2
− 4π2w2)u = θ.

u(x) =
−1

4π2

∫
R

θ(ψξ) e
2πiξx

ξ2 +w2
dξ =

∫
R

〈θ,ψξ〉 ·ψξ
λξ − λw

where ψξ(x) = e
2πixξ, λξ = −4π2ξ2.

The issue of convergence is non-trivial, and Sobolev theory
provides a robust framework for addressing it.
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Sobolev Spaces on R

For ` a positive integer:

• Inner product on C∞
c

〈ϕ1,ϕ2〉` = 〈(1 − ∆)`ϕ1,ϕ2〉L2

• H` is completion of C∞
c

• H−` is its Hilbert space dual

Notice

• H0 = L2

• H` ↪→ H`−1 for all `
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Laplacian and Spectral Transform

Hilbert space isomorphisms:

• (1 − ∆) : H` → H`−2

• F : H` → V`, a weighted L2 space on the spectral side

. . .
(1−∆)

≈
// H`

(1−∆)

≈
//

F ≈

��

H`−2 (1−∆)

≈
//

F ≈

��

. . .

. . .
×(1−λξ)
≈

// V`
×(1−λξ)
≈

// V`−2 ×(1−λξ)
≈

// . . .

where λξ = −4π2ξ2 is the ∆-eigenvalue of ψξ = e2πixξ.
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Justifying Engineering Math

. . .
(1−∆)

≈
// H−`+2 (1−∆)

≈
//

F ≈

��

H−` (1−∆)

≈
//

F ≈

��

. . .

. . .
×(1−λξ)
≈
// V−`+2 ×(1−λξ)

≈
// V−` ×(1−λξ)

≈
// . . .

For θ ∈ H−`, there is unique u, satisfying (∆− λw)u = θ.
Further, u lies in H−`+2, and has spectral expansion

u =

∫
Ξ

〈θ,ψξ〉 ·ψξ
λξ − λw

dξ =
−1

4π2

∫
R

θ(ψξ) · e2πiξx

ξ2 +w2
dξ

converging in H−`+2. (And for ` > k+ 1/2, H` ↪→ Ck.)
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Automorphic Spectral Theory

Analogue of Fourier inversion: automorphic spectral expansion
in terms of eigenfunctions for Laplacian.

Example: SL2(Z)\H, ∆ = y2( d
2

dx2
+ d2

dy2 )

v
L2
=

∑
F

〈v, F〉 · F + 〈v,Φ0〉 ·Φ0 +
1

4πi

∫
1
2+iR
〈v,Es〉 · Es ds

• F ranges over an orthonormal basis of cusp forms

• Φ0 is the constant automorphic form with unit L2-norm

• Es is the real analytic Eisenstein series

Abbreviate/generalize: v =

∫⊕
Ξ

〈v,Φξ〉 ·Φξ dξ
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Global Automorphic
Sobolev Theory

• Compactly supported θ ∈ H−` for some `.

• Existence and uniqueness of solutions of (∆− λw)u = θ.

• Spectral expansion of solution, converging in the
H−`+2-topology:

u =

∫⊕
Ξ

〈θ,Φξ〉 ·Φξ
λξ − λw

dξ

• A global automorphic Sobolev embedding theorem (for
` > k+ dim(X)/2, H` ↪→ Ck).
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Connection to Eigenvalue Question

• Expect to have correspondence:

(sol’ns of (∆− λw)u = (const.)θ)↔ (eig-fcns for “∆̃θ”)

• Have a complete description of the solutions that lie in
global automorphic Sobolev spaces.

• Turns out: such solutions are not always eigenfunctions.

• Issue is that solutions may not lie in the domain of the
Friedrichs extension.
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Friedrichs Extension

An unbounded operator on a Hilbert space is a linear map
from a subspace (the domain) to the Hilbert space.

The Laplacian ∆, restricted to a suitable dense subspace of
L2(X), like C∞

c (X), is a densely defined nonpositive symmetric
unbounded operator on L2(X).

Friedrichs’ general construction gives a self-adjoint extension,
which depends on the choice of domain.
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Domain of Restriction of ∆

For θ compactly supported and ∆θ = ∆|C∞
c (X)∩ker(θ),

• The Friedrichs extension ∆̃θ is self-adjoint,

• the domain of ∆̃θ lies inside H1(X), and

• for u in the domain,

(∆̃θ − λ)u = 0 ⇐⇒ (∆− λ)u = (const) · θ

But: u will only be in H1(X) if θ is in H−1(X).

• θ = δafcz0 does not work: δafcz0 ∈ H
` only for ` < −1

• Try other choices of θ and domain of ∆θ!
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Project to Non-cuspidal Spectrum

Let Θ be a compactly supported distribution on X = SL2(Z)\H.

Θ =
∑
F

Θ(F) ·F + Θ(Φ0) ·Φ0 +
1

4πi

∫
1
2+iR

Θ(E1−s) ·Es ds

Following Colin de Verdiere (1983),

θ = ProjncΘ = Θ(Φ0) ·Φ0 +
1

4πi

∫
1
2+iR

Θ(E1−s) · Es ds

Restrict ∆ to L2nc(X) ∩ C∞
c (X) ∩ ker(θ), and let ∆̃θ be its

Friedrichs extension. Then, for u in the domain of ∆̃θ,

(∆̃θ − λw)u = 0 ⇐⇒ (∆− λw)u = (const) · θ
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Theorem (Bombieri-Garrett)

Let θ = ProjncΘ, where Θ is a compactly supported distribution
on X = SL2(Z)\H. Let ∆θ be the restriction of the Laplacian
to L2(X)nc ∩ C∞

c (X) ∩ ker(θ) and ∆̃θ its Friedrichs extension.

Suppose θ lies in H−1(X) and θ is real, in the sense that
θ(ϕ) = θ(ϕ) for all ϕ ∈ C∞

c (X)

Then the compact period θEw vanishes when λw = w(w− 1)
is an eigenvalue for ∆̃θ with Re(w) = 1

2 .

Note
Hardy-Littlewood 1918 ⇒ θ = Projncδ

afc
ω satisfies the

hypotheses. In this case: θEs = ζQ(ω)(s)/ζ(2s).
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Proof of Theorem

Let u be an eigenfunction for ∆̃θ with eigenvalue
λw = w(w− 1) and w = 1

2 + iτ.

We aim to show that θE 1
2+iτ

= 0. Since the map s 7→ θEs is

continuous, it suffices to show∫τ+ε
τ−ε

|θE 1
2+it

|2 dt → 0 as ε→ 0

Since u lies in the domain of ∆̃θ, which is contained in H1(X),
u has a spectral expansion converging in H1(X), thus also in
L2(X). Plancherel ensures that the spectral coefficients are also
square integrable. Let As = A 1

2+it
be the spectral coefficient

corresponding to Es = E 1
2+it

.
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On the other hand, we know that u is also a solution to
(∆− λw)u = θ, thus, by “engineering math”

A 1
2+it

=
〈θ,Es〉
λs − λw

=
θ(E 1

2+it
)

τ2 − t2

⇒ θ(E 1
2+it

) = (τ2 − t2) ·A 1
2+it

Since θ is real, and invoking Cauchy-Schwartz-Buniakovski,∫τ+ε
τ−ε

|θE 1
2+it

|2 dt =

∫τ+ε
τ−ε

|(τ2 − t2)A 1
2+it

|2 dt

6
∫τ+ε
τ−ε

|τ2−t2|2 dt

∫τ+ε
τ−ε

|A 1
2+it

|2 dt � ε3 ·‖A 1
2+it
‖2L2(R)

Since s 7→ θEs is continuous, this implies that θEw = 0.
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Corollary

If λw = w(w− 1) is an eigenvalue for ∆̃θ with θ = Projncδ
afc
ω ,

then ζQ(ω)(w) vanishes whenever w is on the critical line.

Note
One would hope that the parameter set of eigenvalues would
account for a large proportion of the zeros of the zeta function,
thus proving that a large proportion of the zeros lie on the
critical line. However, it turns out that we miss at least a
positive fraction of zeros. In fact, it is not clear that the
parameter set of eigenvalues is nonempty.
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GL3 Automorphic Spectral Theory

Consider X = SL3(Z)\SL3(R)/SO(3).
L2(X) = L2(X)csp ⊕ L2(X)nc
• ONB of GL3 spherical cusp forms {F} for L2(X)csp
• Non-cuspidal spectrum:

• Min. parabolic Eis. series E1,1,1χ , χ ∈ exp(µ), µ ∈ ρ+ ia∗
• P2,1-Eis. series, E2,1f,s, f in onb of GL2 cfms, s ∈ 1

2 + iR
• Constant afm Φ0 with unit L2-norm

For v in a GL3 global automorphic Sobolev space,

v =
∑
cfm F

〈v, F〉·F + 〈v,Φ0〉 +
1

|W|

∫
ρ+ia∗

〈v,E1,1,1χµ
〉·E1,1,1χµ

dµ

+
∑

GL2 cfms f

∫
1
2+iR
〈v,E2,1f,s〉 · E

2,1
f,s ds
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Projecting to L2(X)nc,f

Let Θ be a compactly supported distribution on X.

Θ =
∑
cfm F

Θ(F) · F +
Θ(1)

〈1, 1〉
+

1

|W|

∫
ρ+ia∗

Θ(Eχµ) · Eχµ dµ

+
∑

GL2 cfms f

∫
1
2+iR

Θ(Ef,1−s) · Ef,s ds

Fix a GL2 cusp form f, and project Θ:

θ = Projnc,fΘ =

∫
1
2+iR

Θ(Ef,1−s) · Ef,s ds

Restrict ∆ to L2nc,f(X) ∩ C∞
c (X) ∩ ker(θ), and let ∆̃θ be its

Friedrichs extension. Then, for u in the domain of ∆̃θ,

(∆̃θ − λ)u = 0 ⇐⇒ (∆− λ)u = (const) · θ
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Theorem
Let θ, ∆θ, and ∆̃θ be as above. If θ ∈ H−1(X) and θ is real,
then the compact period θEf,w vanishes when
λw = 2λf + 6w(w− 1) is an eigenvalue for ∆̃θ with
Re(w) = 1

2 .

Note
Some compact periods of cuspidal data Eisenstein series turn
out to be L-functions. The condition that θ lie in H−1(X) can
be restated in terms of a second moment:∫T

0
|θ(Ef, 12+it

)|2 dt � T2−ε0 (ε0 > 0)

So, under subconvexity? Lindelöf? we can possibly prove that
zeros of these L-functions corresponding to eigenvalues of ∆̃θ
lie on the critical line . . . hoping that there are “many” such . . .
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Proof of Theorem

Let u be an eigenfunction for ∆̃θ with eigenvalue
λw = 2λf + 6w(w− 1), where λf ∈ R is the eigenvalue of the
fixed GL2 cusp form f and w = 1

2 + iτ.

Since u ∈ H1(X), it has a spectral expansion with square
integrable coefficients. Let As = A 1

2+it
be the spectral

coefficient corresponding to Ef,s = Ef, 12+it
. Since u is also a

solution to (∆− λw)u = θ,

A 1
2+it

=
〈θ,Ef,s〉
λf,s − λw

=
θ(Ef, 12+it

)

6(τ2 − t2)

⇒ θ(Ef, 12+it
) = 6(τ2 − t2) ·A 1

2+it
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Proof, continued

Thus, invoking CSB as before,∫τ+ε
τ−ε

|θEf, 12+it
|2 dt = 6

∫τ+ε
τ−ε

|(τ2 − t2)A 1
2+it

|2 dt

6 6

∫τ+ε
τ−ε

|τ2−t2|2 dt

∫τ+ε
τ−ε

|A 1
2+it

|2 dt � ε3·‖A 1
2+it
‖2L2(R)

Since s 7→ θEf,s is continuous, this implies that θEf,w = 0.
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Thank you for your attention!
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