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Backstory

Haas (1977) Zeros of zeta appear among parameter
values {s : A; = s(s — 1)} for purported eigenvalues A4 of
A on SLy(Z)\$

RH within reach?!

Hejhal: Haas' methods flawed

Hejhal (1981), Colin de Verdiere (1981, 1983)
Garrett, Bombieri (current)
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Zeros of zeta functions and
eigenvalues of self-adjoint
operators

Goal (following Hilbert and Polya): produce zeros of zeta
functions (or other compact periods) among parameters w for
eigenvalues A,, = w(w — 1) of self-adjoint operators.
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Zeros of zeta functions and
eigenvalues of self-adjoint
operators

Goal (following Hilbert and Polya): produce zeros of zeta
functions (or other compact periods) among parameters w for
eigenvalues A,, = w(w — 1) of self-adjoint operators.
Theorem (Rough Statement)

If A =w(w — 1) is an eigenvalue of a (carefully constructed)
self-adjoint operator, “Ag", then the period OE,, vanishes
when w is on the critical line, i.e.

{we % +1iR : Ay, = w(w — 1) is an eigenvalue for Ao}

C {s:0Es =0}
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Zeros of Dedekind Zeta Function

particular: 0 = 5;23

e Then OEs = (g(w)(s)/C(2s)
e In critical strip: OEs =0 <= (g(w) =0

with zg = w.

e Construct (?) suitable “Ag” with non-empty (large!?)
discrete spectrum

Id o
"2 %Large subset of zeros of CQ(w) on the critical line!
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Zeros of Dedekind Zeta Function

In particular: 8 = 52, with zg = w.

zp !
e Then OEs = Cg(w)(s)/C(2s)
e In critical strip: OEs =0 <= (g(w) =0
e Construct (?) suitable “Ag” with non-empty (large!?)
discrete spectrum
W%IdLarge subset of zeros of (g(y) on the critical line!
Retrospect:
e Haas’ error: failure to distinguish between A and “Ze”

e Zeros of (g(w)(s) = C(s)L(s,x) appeared among the
parameter values for his purported eigenvalues of A.
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What is Zg?

The operator 59 will be
e the Friedrichs extension (necessarily self-adjoint)
e of a suitable restriction Ag
e of the Laplacian A on SL,(Z)\$
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What is Zg?

The operator Ze will be
e the Friedrichs extension (necessarily self-adjoint)
e of a suitable restriction Ag
e of the Laplacian A on SL,(Z)\$

Given 0, want to choose Ag such that:

7

(Ag —Aw)u=0 <= (A—Ay)u=(const)- 0
e Use “engineering math” to find solutions!
e But such solutions may not lie in the domain of 39!
e For example, 0 = 53 (CdV)

20

To clarify, need details of Friedrichs extension and global
automorphic Sobolev theory.
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dx2’

d? 2.2 _
(42 —4mTw)u = 8
Engineering
math on R

IS Apply a Fourier transform to both sides:

on

Automorphic
case

Friedrichs (—47'[25,2 — 47'[21/\)2)97(11) = 3:(6) =1

extension

Division gives Fourier coefficients for u. Fourier inversion:

(x) = J&f (£) e qg — _lj TS
ulx = e u e = 47_[2 R£Z+W2
_e27'[W|X|
= — (Re(w) > 0)

dtw
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Compactly supported 8 on R

For © compactly supported: (— —4mw?)u = 0.
-1 0 1y 2mmiéx e, .
ulx) [ I
A2 | E2+w? R A —Aw

where Vg (x) = e?™%E Ag = —4m2E2.

The issue of convergence is non-trivial, and Sobolev theory
provides a robust framework for addressing it.



Zeros of Zeta
Functions and
Eigenvalues of
Pseudo-
Laplacians

Amy DeCelles

Engineering
math on
Sobolev spaces
on R
Automorphic
case

Friedrichs
extension

Sobolev Spaces on R

For £ a positive integer:

e Inner product on C°

(@1, 02)¢ = (1 — A) @1, @2)12

e H'is completion of C®

e HYis its Hilbert space dual
Notice

e HO =12

e H — H for all ¢
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Laplacian and Spectral Transform

Hilbert space isomorphisms:
e (1—A):H* - HE2

e F:H'— V¢ a weighted L2 space on the spectral side

X(l*)\g’) X(l*)\g’)

X (1—Ag)
_ VZ _ V€—2 %

where Az = —47%£2 is the A-eigenvalue of Py = e2x¢,
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Justifying Engineering Math

F|~ F|=

(1 7\2 V E+2 X(l:?\a) V_e X(l:?\a)

~ ~ ~

For 8 € H ¢, there is unique u, satisfying (A — A, Ju = 6.

Further, u lies in H=¢"2 and has spectral expansion
u = J O%e) We g _1J O(g) - e¥miex
= Az —Aw 4712 2 w2

converging in H=**2. (And for ¢ >k + 1/2, H' — Ck))

d,



Zeros of Zeta
Functions and
Eigenvalues of
Pseudo-
Laplacians

Amy DeCelles

Engineering
math on
Sobolev spaces
on
Automorphic
case

Friedrichs
extension

Automorphic Spectral Theory

Analogue of Fourier inversion: automorphic spectral expansion
in terms of eigenfunctions for Laplacian.

Example: SL>(Z)\$, A = 92(dd7x22 T dL;)

L2 1
v = Z W, F)-F 4+ (v,Dp) - Py + ‘WJ1+1R<V'ES>.ES ds
F 2

e F ranges over an orthonormal basis of cusp forms
e @ is the constant automorphic form with unit L?-norm

e E; is the real analytic Eisenstein series

®
Abbreviate/generalize: v = J (v, Dg) - D di
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Global Automorphic
Sobolev Theory

Compactly supported 8 € H=* for some ¢.

Existence and uniqueness of solutions of (A —A,,)u = 6.

Spectral expansion of solution, converging in the
H~ % 2_topology:

[P0, D¢) - D
u = L 77\3_}\ d§

e A global automorphic Sobolev embedding theorem (for
£ >k +dim(X)/2, H® < C*).
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e Expect to have correspondence:

(sol'ns of (A — Ay )u = (const.)0) < (eig-fcns for “Ag™)
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Connection to Eigenvalue Question

Expect to have correspondence:

(sol'ns of (A — Ay )u = (const.)0) < (eig-fcns for “Ag™)

Have a complete description of the solutions that lie in
global automorphic Sobolev spaces.

Turns out: such solutions are not always eigenfunctions.

Issue is that solutions may not lie in the domain of the
Friedrichs extension.
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Friedrichs Extension

An unbounded operator on a Hilbert space is a linear map
from a subspace (the domain) to the Hilbert space.

The Laplacian A, restricted to a suitable dense subspace of
L2(X), like C®(X), is a densely defined nonpositive symmetric
unbounded operator on L2(X).

Friedrichs’ general construction gives a self-adjoint extension,
which depends on the choice of domain.
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Domain of Restriction of A

For © compactly supported and Ag = A|C3°(XJﬂker(9)v

e The Friedrichs extension Ag is self-adjoint,
e the domain of Ag lies inside H(X), and

e for u in the domain,

(Ag—Au=0 <= (A—A)u=(const)-
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Domain of Restriction of A

For © compactly supported and Ag = A|C3°(X)ﬂker(9)v

e The Friedrichs extension Ag is self-adjoint,
e the domain of Ag lies inside H(X), and

e for u in the domain,
(Ao —Au=0 <= (A—A)u=const)-0

But: u will only be in HY(X) if 8 is in H™1(X).
e 6 =52 does not work: 53 € H* only for £ < —1
e Try other choices of 8 and domain of Ag!
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Project to Non-cuspidal Spectrum
Let © be a compactly supported distribution on X = SL,(Z)\$.
® Z@ )-F + ©(®)- 0o + J O(E1—s)-Es ds
3
Following Colin de Verdiere (1983),

_ 1
0 = Proj,® = O(Dg) - g + .Jl O(E1—s) - Es ds

Restrict A to [2.(X) N CX(X) Nker(0), and let Znge its
Friedrichs extension. Then, for u in the domain of Ag,

(Ze —Awu=0 — (A—Aw)u=(const) -0
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Theorem (Bombieri-Garrett)

Let 8 = Proj,.0, where O is a compactly supported distribution
on X = S1(Z)\H. Let Ag be the restriction of the Laplacian
to L2(X)ne N CP(X) Nker(0) and Ag its Friedrichs extension.

Suppose 0 lies in H71(X) and 0 is real, in the sense that

0(p) =0(@) for all @ € CX(X)

Then the compact period O,y vanishes when A, =w(w —1)

is an eigenvalue for Ag with Re(w) = %

Note
Hardy-Littlewood 1918 = 0 = Proj,, .52 satisfies the
hypotheses. In this case: 0Es = (g(w)(s)/C(2s).
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Proof of Theorem

Let u be an eigenfunction for Ag with eigenvalue
Aw=ww—1) and w = % +iT.

We aim to show that eE%—'—iT = 0. Since the map s — OE; is
continuous, it suffices to show

T+e
J BEy i fPdt — 0 as =0
£

T—

Since u lies in the domain of 59, which is contained in H!(X),
u has a spectral expansion converging in H!(X), thus also in
L2(X). Plancherel ensures that the spectral coefficients are also
square integrable. Let Ag = A%Ht be the spectral coefficient
corresponding to Eg = E%Ht.
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On the other hand, we know that u is also a solution to
(A — Ay )u =0, thus, by “engineering math”

A, = (0E) Ol

att As — Aw T2 — 12
ATE Y (2 42

= G(E%Ht) = (" —t )'A%Ht

Since 0 is real, and invoking Cauchy-Schwartz-Buniakovski,

T+E T+E
J £|9E%Ht|2 dt = J (T —t?) A1, * dt

T T—E&E 2

T+e€ ) o T+e 5 3 5
< J ITe—17] dtJ \A%+it| dt < ¢ 'HA%Jrit”U(
€

T—E T

Since s — OE; is continuous, this implies that 6E,, = 0.

R)

]
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Corollary

If Aw =w(w —1) is an eigenvalue for Zg with 8 = Proj,, .63,
then (g(w) (W) vanishes whenever w is on the critical line.
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Corollary
If Aw =w(w —1) is an eigenvalue for Ze with 8 = Proj,, .63,
then (g(w) (W) vanishes whenever w is on the critical line.

Note

One would hope that the parameter set of eigenvalues would
account for a large proportion of the zeros of the zeta function,
thus proving that a large proportion of the zeros lie on the
critical line. However, it turns out that we miss at least a
positive fraction of zeros. In fact, it is not clear that the
parameter set of eigenvalues is nonempty.
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LZ(X) = Lz(X)csp @ I—2(X)nc
e ONB of GLj3 spherical cusp forms {F} for Lz(X)csp
e Non-cuspidal spectrum:
o e Min. parabolic Eis. series E}'"!, x € exp(u), 1 € p +ia*
et o e P2LEis. series, EZ'L, f in onb of GL cfms, s € 3 + iR
éériaaion for e Constant afm @ with unit L?-norm

For v in a GL3 global automorphic Sobolev space,

1
v = ) (WEF+ (v,®) + |W|J W EM) B du
cfm F ptia®
2,1\ 21
+ ) L v EpS) B ds
GLs cfms f 3 +HiR
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Projecting to L2(X) e
Let ©® be a compactly supported distribution on X.

I3 O(1) 1 J
c%F " (1,1) W[ Jpsiar ( xu) xu A1

+ Z Jl ) ®(E¥,1—s) : Ef’s ds
GLs cfms f 3 +HR

Fix a GL, cusp form f, and project ©:

0 = Proj,t® = J O(Es;_)-Efsds
1HiR ’

Restrict A to Lﬁc’f(X) N CX(X) Nker(0), and let Ag be its
Friedrichs extension. Then, for u in the domain of Ze,

(59 —Au =0 <= (A—Au = (const)-0



Zeros of Zeta
Functions and
Eigenvalues of
Pseudo-
Laplacians

Amy DeCelles

Projecting to
non-cuspidal
spectrum for
GLy

A variation for
GLg

Theorem N

Let 8, Ag, and Ag be as above. If 8 € H1(X) and 8 is real,
then the compact period OE¢ 4, vanishes when

Aw = 2A¢ + 6w(w — 1) is an eigenvalue for Ze with

Re(w) = %
Note

Some compact periods of cuspidal data Eisenstein series turn
out to be L-functions. The condition that 0 lie in H™1(X) can
be restated in terms of a second moment:

-
2 2—
L BEy P dt < T2  (eg>0)
So, under subconvexity? Lindelof? we can possibly prove that

zeros of these L-functions corresponding to eigenvalues of Ag
lie on the critical line ... hoping that there are “many” such ...
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Proof of Theorem

Let u be an eigenfunction for Ag with eigenvalue
Aw = 2A¢ + 6w(w — 1), where A¢ € R is the eigenvalue of the
fixed GLy cusp form f and w = % +1T.

Since u € H1(X), it has a spectral expansion with square
integrable coefficients. Let Ag = A%Ht be the spectral
coefficient corresponding to E¢ s = Ef%+it. Since u is also a
solution to (A — A, )u =6,

A ~ (0,Efs) e(Ef,%Ht)
T N AW 6(T2—12)

= e(Ef,%+it) = 6(7° —t?) AL
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Proof, continued

Thus, invoking CSB as before,

T+E€ T+e€
J |6Ef,%+it|2 dt = 6J |(T2 - t2)A%+it|2 dt
€

T T—E&

T+e¢ ) ) T+E 9 5
<6 e APd < AR

T—E T—E

Since s — OE¢ ¢ is continuous, this implies that 0E¢ ., = 0.

(R)

O



Thank you for your attention!
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