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Abstract The occurrence of zeros of the Riemann zeta function in a list (Haas, 1977) of
parameter values {s : λs = s(s− 1)} for purported eigenvalues λs of the Laplacian on SL2(Z)\H
raised hopes that a proof of the Riemann Hypothesis might be within reach, prompting a flurry
of activity, trying first to reproduce, then correct or modify Haas’ results. Although Hejhal
showed that Haas’ methods were flawed, the intriguing fact that his error would produce
exactly the zeros of zeta led to related investigations (Hejhal, 1981, Colin de Verdière 1981 and
1983.) Recent work of Garrett and Bombieri sheds light on the previously hidden difficulties
inherent this approach, opening the door to new constructions which avoid these difficulties.
We will discuss some of these new constructions.

1 Introduction

1.1 Zeros of zeta functions and eigenvalues of self-adjoint operators

Our goal (following Hilbert and Polya) is to produce zeros of zeta functions (or other compact periods of
automorphic forms) among parameters w for eigenvalues λw = w(w − 1) of self-adjoint operators.

We will prove a result that can be roughly stated as follows:

If λw = w(w − 1) is an eigenvalue of a (carefully constructed) self-adjoint operator, “∆̃θ”, then the
period θEw vanishes when w is on the critical line.

{w ∈ 1
2 + iR : λw = w(w − 1) is an eigenvalue for ∆̃θ} ⊂ {s : θEs = 0}

(Necessarily such an eigenvalue is real, so w lies either on the critical line or on the real interval [0, 1].)

For example, we may want to choose θ = δafc
z0 , the Dirac delta distribution with base point z0 chosen to be a

CM point, e.g. z = i or z = ω, the corner of the fundamental domain. When z0 = ω, θEs = ζQ(ω)(s)/ζ(2s),
and so vanishing of θEs in the critical strip corresponds exactly to vanishing of ζQ(ω) in the critical strip. If

we can construct a suitable operator “∆̃θ” for θ = δafc
z0 with non-empty (large!?) discrete spectrum, then we

will be able to prove that a large subset of zeros of the Dedekind zeta function ζQ(ω) lie on the critical line!

Note. In retrospect, after Hejhal and Colin de Verdiere’s work, we can view Haas’ error as a failure to
distinguish between ∆ and this more subtle, still-to-be-described “∆̃θ” with θ = δafc

ω . This is why zeros of
ζQ(ω)(s), including zeros of the Riemann zeta function (since ζQ(ω) factors as ζ(s)L(s, χ), where χ is the
non-trivial Dirichlet character mod 3), appeared among the parameter values for his purported eigenvalues
of ∆.

1.2 Constructing suitable operators

The operator ∆̃θ will be the Friedrichs extension (necessarily self-adjoint) of a suitable restriction
(depending on θ) of the Laplacian ∆ on SL2(Z)\H.
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Given a compactly supported automorphic distribution θ, we want to choose a suitable restriction ∆θ of
the Laplacian such that its Friedrichs extension ∆̃θ satisfies:

(∆̃θ − λw)u = 0
??⇐⇒ (∆− λw)u = (const) · θ

(We want the operator ∆̃θ to be similar to ∆ but to tolerate some non-smoothness in its eigenfunctions.)
Since solutions to the latter equation can be found using “engineering math,” this would give us a way to
describe eigenfunctions for ∆̃θ!

However, it is possible that the “engineering math” solutions do not actually lie in the domain of ∆̃θ!

In particular, as Colin de Verdiere observed, it is possible to construct ∆θ for θ = δafc
z0 such that ∆̃θ

“overlooks” θ and to find explicit spectral expansions for solutions u by “engineering math”, but it turns
out that these solutions lie outside the domain of ∆̃θ, so they do not correspond to genuine eigenfunctions
for ∆̃θ.

To understand this failure (and to make alternative constructions with more chance of success), it is
necessary to understand some of the details of the Friedrichs extension as well as some global automorphic
Sobolev theory.

2 Engineering Math, Sobolev Theory, and the Friedrichs
Extension

2.1 Engineering math on R: solving differential equations by division

To communicate the main ideas, we look at the simplest case: R. Here ∆ = d2

dx2 . Normalize λw as
λw = 4π2w2, and let θ = δ be the Dirac delta distribution at x = 0 on R. Our differential equation
(∆− λw)u = θ becomes

( d2

dx2 − 4π2w2)u = δ

Apply a Fourier transform to both sides:

(−4π2ξ2 − 4π2w2)F(u) = F(δ) = 1

This gives the Fourier coefficients for u, by division. The spectral expansion for u is given by Fourier
inversion, and residue calculus gives an elementary result.

u(x) =

∫
R
Fu(ξ) e2πiξx dξ =

−1

4π2

∫
R

e2πiξx

ξ2 + w2
dξ =

−e2πw|x|

4πw
(Re(w) > 0)

More generally, if θ is a compactly supported distribution, the solution u to ( d2

dx2 − 4π2w2)u = θ has
spectral expansion

u =
−1

4π2

∫
R

θ(ψξ) e
2πiξx

ξ2 + w2
dξ =

∫
R

〈θ, ψξ〉 · ψξ
λξ − λw

where ψξ = e2πixξ, λξ = −4π2ξ2

The issue of convergence is non-trivial, and Sobolev theory provides a robust framework for addressing it.

2.2 Justification using Sobolev spaces on R
For positive integer `, define an inner product 〈 , 〉` on C∞c by

〈ϕ1, ϕ2〉` = 〈(1−∆)`ϕ1, ϕ2〉L2 where ∆ = ∆R = d2

dx2

Let H` be the Hilbert space completion of C∞c with respect to the topology induced by 〈 , 〉`, and let H−`

be its Hilbert space dual.
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Note that H0 = L2 and the Sobolev spaces form a nested family, H` ↪→ H`−1 for all `.

The Laplacian acts nicely: (1−∆) : H` → H`−2 is a Hilbert space isomorphism.

The spectral transform gives a Hilbert space isomorphism to a weighted L2-space V ` on the spectral side:
F : H` → V `, and we have the following commutative diagram of Hilbert space isomorphisms:

. . . H+`
(1−∆)

≈
//

F ≈

��

H+`−2
(1−∆)

≈
//

F ≈

��

. . .
(1−∆)

≈
// H−`+2

(1−∆)

≈
//

F ≈

��

H−` . . .

F ≈

��
. . . V +`

×(1−λξ)

≈
// V +`−2

×(1−λξ)

≈
// . . .

×(1−λξ)

≈
// V −`+2

×(1−λξ)

≈
// V −` . . .

where, as above, λξ = −4π2ξ2 is the ∆-eigenvalue of ψξ = e2πixξ.

This provides justification for our “engineering math.” In particular, if θ is a distribution lying in some
Sobolev space H−` (and all compactly supported distributions do, for some `), then there is a solution u,
unique in Sobolev spaces, satisfying (∆− λw)u = θ. Further, u lies in H−`+2, and has spectral expansion

u =

∫
Ξ

〈θ, ψξ〉 · ψξ
λξ − λw

dξ =
−1

4π2

∫
R

θ(ψξ) · e2πiξx

ξ2 + w2
dξ

converging in H−`+2.

The Sobolev embedding theorem allows comparison to Ck convergence: for ` > k + 1/2, H` ↪→ Ck. For
example, H1 ↪→ C0, so if θ ∈ H−1, then the spectral expansion for u converges in H1 and thus in C0, i.e.
uniformly pointwise. Note the shift-of-index.

2.3 Automorphic case

We have developed an analogous global Sobolev theory for the automorphic case, which interacts nicely
with the spectral theory for automorphic forms.

Consider the case X = SL2(Z)\H. The analog of Fourier inversion is the automorphic spectral expansion

in terms of eigenfunctions for the Laplacian ∆ = y2( d2

dx2 + d2

dy2 ).

v
L2

=
∑
F

〈v, F 〉 · F + 〈v,Φ0〉 · Φ0 +
1

4πi

∫
1
2 +iR
〈v,Es〉 · Es ds

where F ranges over an orthonormal basis of cusp forms, Φ0 is the constant automorphic form with unit
L2-norm, and Es is the real analytic Eisenstein series. (Note that the integrals (both the integral over s
and the integrals implied by the pairings) are not necessarily uniformly pointwise convergent, but they can
be understood as extensions by isometric isomorphisms of continuous linear functionals on C∞c (X).)

We can abbreviate (and generalize) this by denoting elements of the spectral “basis” (cusp forms,
Eisenstein series, residues of Eisenstein series) uniformly as {Φξ}ξ∈Ξ.

v =

∫ ⊕
Ξ

〈v,Φξ〉 · Φξ dξ

Global automorphic Sobolev theory allows us to conclude that:

• Every compactly supported distribution lies in H−` for some `.
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• Given λw ∈ C and a compactly supported θ, there is a unique u in Sobolev spaces such that
(∆− λw)u = θ. Further, if θ ∈ H−`, then u ∈ H−`+2, and u has the following spectral expansion,
converging in the H−`+2-topology:

u =

∫ ⊕
Ξ

〈θ,Φξ〉 · Φξ
λξ − λw

dξ

• A global automorphic Sobolev embedding theorem (for ` > k + dim(X)/2, H` ↪→ Ck) allows
comparison to Ck convergence, and, in particular, uniform pointwise convergence, if desired.

Recall that we expect some correspondence between solutions of (∆− λw)u = θ and eigenfunctions for a

suitably constructed “∆̃θ”. We now have a complete description of the solutions that lie in global
automorphic Sobolev spaces. However, it is necessary to understand a few things about the details of the
Friedrichs construction to see why it is that sometimes the solutions turn out not to be eigenfunctions.

2.4 The Friedrichs extension and the failure of θ = δafcz0

An unbounded operator on a Hilbert space is simply a linear map from a subspace (the domain) to the
Hilbert space. In particular, specifying the domain is essential when defining such an operator.

The Laplacian ∆ (restricted to a suitable dense subpace of L2(X), like C∞c (X)) is a densely defined
nonpositive symmetric unbounded operator on L2(X). Friedrichs’ general construction gives a self-adjoint
extension, which depends on the choice of domain.

For example, for θ a compactly supported automorphic distribution, let ∆θ refer to the restriction of ∆ to
C∞c (X) ∩ ker(θ). By construction, the Friedrichs extension ∆̃θ is self-adjoint, its domain lies inside H1(X),
and for u in the domain,

(∆̃θ − λ)u = 0 ⇐⇒ (∆− λ)u = (const) · θ

However, by the discussion above, the solution u will only be in H1(X) if θ is in H−1(X). This restricts
our choices for θ significantly, and, in particular, this is why the choice θ = δafc

z0 does not work: δafc
z0 ∈ H

`

only for ` < −1.

The framework of global automorphic Sobolev theory helps distinguish between aspects of the construction
of ∆̃θ that are inherent and aspects that can be modified. In particular, while θ = δafc

z0 will certainly not
work, other choices of θ and of the domain of ∆θ may yield interesting results.

3 Projecting to the Non-cuspidal Spectrum: Positive Results

3.1 Projecting distributions to non-cuspidal spectrum for GL2

Let Θ be a compactly supported distribution on X = SL2(Z)\H. It has a spectral expansion converging in
a negatively indexed Sobolev space:

Θ =
∑
F

Θ(F ) · F + Θ(Φ0) · Φ0 +
1

4πi

∫
1
2 +iR

Θ(E1−s) · Es ds

Following Colin de Verdiere (1983), we project to the non-cuspidal part of the spectrum, defining θ as

θ = ProjncΘ = Θ(Φ0) · Φ0 +
1

4πi

∫
1
2 +iR

Θ(E1−s) · Es ds

Consider ∆ restricted to L2
nc(X) ∩ C∞c (X) ∩ ker(θ), and let ∆̃θ be its Friedrichs extension. Then, for u in

the domain of ∆̃θ,
(∆̃θ − λw)u = 0 ⇐⇒ (∆− λw)u = (const) · θ
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Thus λw is an eigenvalue for ∆̃θ if an only if there is a nonzero solution u to the automorphic differential
equation (∆− λw)u = θ, lying in the domain of ∆̃θ.

Without the framework of global automorphic Sobolev spaces, Colin de Verdiere could only speculate the
following result.

Theorem (Bombieri-Garrett). Let θ = ProjncΘ, where Θ is a compactly supported distribution on

X = SL2(Z)\H. Let ∆θ be the restriction of the Laplacian to L2(X)nc ∩ C∞c (X) ∩ ker(θ) and ∆̃θ its
Friedrichs extension. If θ lies in H−1(X) and θ is real, in the sense that θ(ϕ) = θ(ϕ) for all ϕ ∈ C∞c (X),

then the compact period θEw vanishes when λw = w(w − 1) is an eigenvalue for ∆̃θ with Re(w) = 1
2 .

Note. As Colin de Verdiere observed, the distribution θ = Projncδ
afc
z0 , with z0 = i, ω, satisfies the

hypotheses in the theorem, by a 1970 result of Motohashi on the second moment of Dedekind zeta
functions. (In fact, as Bombieri has pointed out, the 1918 result of Hardy and Littlewood suffices.) Recall
that, in this case, with z0 = ω, the period θEs is a ratio of zeta functions: θEs = ζQ(ω)(s)/ζ(2s).

Proof of Theorem. Let u be an eigenfunction for ∆̃θ with eigenvalue λw = w(w − 1). Since ∆̃θ is
self-adjoint, by construction, w necessarily lies either on the critical line or on the real interval [0, 1]. By
hypothesis w lies on the critical line; let w = 1

2 + iτ . We aim to show that θE 1
2 +iτ = 0. Since the map

s 7→ θEs is continuous, it suffices to show∫ τ+ε

τ−ε
|θE 1

2 +it|2 dt → 0 as ε→ 0

Since u lies in the domain of ∆̃θ, which is contained in H1(X), u has a spectral expansion converging in
H1(X), thus also in L2(X). Plancherel ensures that the spectral coefficients are also square integrable. Let
As = A 1

2 +it be the spectral coefficient corresponding to Es = E 1
2 +it.

On the other hand, we know that u is also a solution to (∆− λw)u = θ, thus, by “engineering math”

A 1
2 +it =

〈θ, Es〉
λs − λw

=
θ(E 1

2 +it)

τ2 − t2
i.e. θ(E 1

2 +it) = (τ2 − t2) ·A 1
2 +it

Since θ is real, and invoking Cauchy-Schwartz-Buniakovski,∫ τ+ε

τ−ε
|θE 1

2 +it|2 dt =

∫ τ+ε

τ−ε
|(τ2−t2)A 1

2 +it|2 dt ≤
∫ τ+ε

τ−ε
|τ2−t2|2 dt

∫ τ+ε

τ−ε
|A 1

2 +it|2 dt � ε3·‖A 1
2 +it‖2L2(R)

Since s 7→ θEs is continuous, this implies that θEw = 0.

Corollary. If λw = w(w − 1) is an eigenvalue for ∆̃θ with θ = Projncδ
afc
ω , then ζQ(ω)(w) vanishes whenever

w is on the critical line.

3.2 A variation for GL3

Consider X = SL3(Z)\H3. As in the previous case L2(X) decomposes into a cuspidal part, for which we
may choose an orthonormal basis of GL3 spherical cusp forms {F}, and a non-cuspidal part. In the
non-cuspidal spectrum are the continuous family of minimal parabolic Eisenstein series E1,1,1

χ where

χ = exp(µ), for some µ ∈ ρ+ ia∗, and the family of P 2,1-Eisenstein series, E2,1
f,s , with cuspidal data f in an

orthonormal basis of GL2 cusp forms and complex parameter s ∈ 1
2 + iR, along with the constant

automorphic form Φ0 (residue of minimal parabolic Eisenstein series). For v in a GL3 global automorphic
Sobolev space,

v =
∑

cfm F

〈v, F 〉 · F + 〈v,Φ0〉 +
1

|W |

∫
ρ+ia∗

〈v,E1,1,1
χµ
〉 · E1,1,1

χµ
dµ +

∑
GL2 cfms f

∫
1
2 +iR
〈v,E2,1

f,s〉 · E
2,1
f,s ds
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where convergence is in a global Sobolev topology. From now on, we drop the superscripts denoting the
relevant parabolic for the Eisenstein series.

Let ∆ the Laplacian on X and Θ a compactly supported distribution on X. Being compactly supported, Θ
lies in a global automorphic Sobolev space and has the following spectral expansion:

Θ =
∑

cfm F

Θ(F ) · F +
Θ(1)

〈1, 1〉
+

1

|W |

∫
ρ+ia∗

Θ(Eχµ
) · Eχµ

dµ +
∑

GL2 cfms f

∫
1
2 +iR

Θ(Ef,1−s) · Ef,s ds

Fix a GL2 cusp form f , and project Θ to the corresponding part of the non-cuspidal spectrum: let

θ = Projnc,f Θ =

∫
1
2 +iR

Θ(Ef,1−s) · Ef,s ds

Restrict ∆ to L2
nc,f (X) ∩ C∞c (X) ∩ ker(θ), and let ∆̃θ be its Friedrichs extension. Then, for u in the

domain of ∆̃θ,
(∆̃θ − λ)u = 0 ⇐⇒ (∆− λ)u = (const) · θ

Theorem. Let θ, ∆θ, and ∆̃θ be as above. If θ lies in H−1(X) and θ is real, in the sense that θ(ϕ) = θ(ϕ)
for all ϕ ∈ C∞c (X), then the compact period θEf,w vanishes when λw = 2λf + 6w(w − 1) is an eigenvalue

for ∆̃θ with Re(w) = 1
2 .

Note. Some compact periods of cuspidal data Eisenstein series turn out to be L-functions. The condition
that θ lie in H−1(X) can be restated in terms of a second moment:∫ T

0

|θ(Ef, 12 +it)|2 dt � T 2−ε0 (ε0 > 0)

So, under subconvexity? Lindelöf? we can possibly prove that zeros of these L-functions corresponding to
eigenvalues of ∆̃θ lie on the critical line . . . hoping that there are “many” such . . .

Proof of Theorem. Let u be an eigenfunction for ∆̃θ with eigenvalue λw = 2λf + 6w(w − 1), where λf ∈ R
is the eigenvalue of the fixed GL2 cusp form f and w = 1

2 + iτ . Since u ∈ H1(X), it has a spectral
expansion with square integrable coefficients. Let As = A 1

2 +it be the spectral coefficient corresponding to

Ef,s = Ef, 12 +it. Since u is also a solution to (∆− λw)u = θ,

A 1
2 +it =

〈θ,Ef,s〉
λf,s − λw

=
θ(Ef, 12 +it)

6(τ2 − t2)
i.e. θ(Ef, 12 +it) = 6(τ2 − t2) ·A 1

2 +it

Thus, invoking CSB as before,∫ τ+ε

τ−ε
|θEf, 12 +it|2 dt = 6

∫ τ+ε

τ−ε
|(τ2−t2)A 1

2 +it|2 dt ≤ 6

∫ τ+ε

τ−ε
|τ2−t2|2 dt

∫ τ+ε

τ−ε
|A 1

2 +it|2 dt � ε3·‖A 1
2 +it‖2L2(R)

Since s 7→ θEf,s is continuous, this implies that θEf,w = 0.
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