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The study of spectral theory of automorphic forms began with Rankin and Selberg in the late 1930’s,
continued with Selberg and Roelcke in the 50’s, Gelfand, Fomin, and Graev in the 50’s and 60’s,
Harish-Chandra and Langlands in the 60’s, and more recently Moeglin and Walsdpurger in the 90’s.

1. Automorphic Forms on SL2(Z)\SL2(R)

First we treat the simplest possible case, automorphic forms on SL2(Z)\SL2(R). This corresponds to
the familiar discussion of SL2(Z)-invariant functions on the upper half plane. From a modern point of
view, considering SL2(Z)\SL2(R) corresponds to picking the archimedean place out of the more
natural and coherent adelic version of the story, the harmonic analysis of automorphic forms on
ZAGL2(Q)\GL2(A). However, many of the difficulties that arise in the adelic discussion are already
present in the archimedean case, so we choose to treat the archimedean case first.

Here G = SL2. Recall the Iwasawa decomposition:

G = PK = MNK

where P is the standard parabolic subgroup (upper triangular matrices), K is the standard maximal
compact subgroup (the orthogonal group SO(2)), M is the standard Levi component of P (diagonal
matrices), and N is the unipotent radical for P (upper triangular matrices with 1’s on the diagonal.)

Reduction theory and the theory of compact operators show that the space L2
cusp(GZ\GR) of

square-integrable cusp forms decomposes discretely with finite multiplicity, i.e. for f in L2(GZ\GR)
satisfying the Gelfand condition:

f
L2

=
∑

F∈ onb of cfms

〈f, F 〉 · F

The orthogonal complement is spanned by pseudo-Eisenstein series

Ψϕ(g) =
∑

γ∈PZ\GZ

ϕ(γg) for ϕ ∈ C0
c (NRMZ\GR)

The space of pseudo-Eisenstein series decomposes as the direct integral of Eisenstein series Es,
parameterized by s ∈ C,

Es(g) =
∑

γ∈PZ\GZ

fs(γg)

where fs is a vector in an induced representation, coming from a character χs on M extended to P by
left N -invariance. This is the same as the classical presentation because

NRMZ\GR/K ≈MZ\MR

and furthermore:
ZRMZ\MR ≈ GL1(Z)\GL1(R) ≈ Z×\R× ≈ R+

So if we assume that everything is spherical, with trivial central character, we can consider ϕ and χs as
functions on R+. So we can use Mellin inversion to decompose ϕ:

ϕ =

∫
Mϕ(s) ys ds =

∫
〈ϕ, χs〉 · χs

and so, after some work, the pseudo-Eisenstein series decomposes as:

Ψϕ =

∫
〈Ψϕ, Es〉 · Es
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Note that we need Re(s) > 1 in order to do the manipulations required to obtain this decomposition.
To fold up the integral, we move the contour to the critical line, picking up a residue. After some work,

Ψϕ =

∫
1
2+iR+

〈Ψϕ, Es〉 · Es +
〈Ψϕ, 1〉
〈1, 1〉

· 1

2. Harmonic Analysis for Automorphic Forms on ZAGL3(k)\GL3(A)

Having discussed the spectral theory for SL2(Z)\SL2(R) we now use the same framework to discuss
the GL3 case. Here we work in an adelic setting, over an arbitrary number field k. As we will see, this
only alters the discussion minimally.

2.1 Classifying/grouping Automorphic Forms by Cuspidal Support

The goal is to decompose the space of square-integrable automorphic forms into irreducible
subrepresentations. As in the case of SL2, we start with the cuspidal automorphic forms.

Given a parabolic P in G, and function f on ZAGk\GA, the constant term of f along P is

cP f(g) =

∫
Nk\NA

f(ng) dn

where N is the unipotent radical of P . An automorphic form satisfies the Gelfand condition if, for all
maximal parabolics P , the constant term along P is zero. If such a function is also z-finite (for example,
it is an eigenfunction for Casimir) and K-finite (for example, it is spherical), it is called a cusp form.

Since the right action of G commutes with taking constant terms, the space of functions satisfying the
Gelfand condition is G-stable, and so is a subrepresentation. Gelfand and Pietesky-Shapiro showed
that integral operators on this space are compact, so by spectral theory of compact operators, this
subrepresentation decomposes into a direct sum of irreducibles, each with finite multiplicity. We will
take this for granted and decompose the rest of L2.

Having used the constant term to filter out the cusp forms, we now use the map for further sorting. As
a first step towards obtaining the L2 decomposition of the non-cuspidal automorphic forms, we classify
them according to their cuspidal support, i.e. the smallest parabolic on which they have a non-zero
constant term. (Conversely we can think of the largest parabolic on which its constant term is zero.)

In GL3, there are three conjugacy classes of proper parabolic subgroups. In addition, the whole group
may also considered to be parabolic in a trivial sense. We will consider the standard parabolic
subgroups: P 3 = GL3, P 2,1 and P 1,2 the maximal parabolics, and P 1,1,1 the minimal parabolic,
contained in both P 2,1 and P 1,2.

Starting with the easiest cases, we observe that an automorphic form whose constant term along
P 3 = GL3 is zero is identically zero, and an automorphic form with cuspidal support P 3 is precisely a
nonzero cusp form.

There is more to say about automorphic forms whose cuspidal support is a maximal parabolic.
Consider an automorphic form f with cuspidal support P 2,1 and let F = c2,1f . Then F is a non-zero
left N2,1-invariant function. So if it is spherical, it can be considered as a GL2 automorphic form. In
fact it is a GL2 cusp form, since the constant term of f along the minimal parabolic is zero.

Lastly, we have the automorphic forms whose cuspidal support is the minimal parabolic, i.e. those
whose constant term along P 1,1,1 is nonzero.

While classifying automorphic forms according to cuspidal support is helpful (because of certain
adjointness relations, which allow us to prove the orthogonality of subspaces spanned by them) it does
not give us a very concrete or explicit description of the various classes of automorphic forms. Recall
from the SL2 case that pseudo-Eisenstein series provided an explicit description of automorphic forms
with cuspidal support P , and the space spanned by pseudo-Eisenstein series was the orthogonal
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complement to the space of cusp forms. In GL3 things are more complicated, since there are more
parabolic subgroups, but we will still use pseudo-Eisenstein series to describe the orthogonal
complement to the space of cusp forms.

Define pseudo-Eisenstein series in a manner exactly analogous to the SL2 case:

Ψϕ(g) =
∑

γ∈Pk\Gk

ϕ(γ · g)

where ϕ is a continuous, compactly supported function on ZANAMk\GA. In GL3, there are three
different kinds of pseudo-Eisenstein series, corresponding to the three standard parabolic subgroups. It
is relatively straightforward to check that the space of all pseudo-Eisenstein series is the orthogonal
complement to the space of cusp forms, but it will require more work to determine how many different
kinds of pseudo-Eisenstein series we actually need in order to span the complement.

We start with the following adjointness relation, the key to proving orthogonality.

Claim. For any square-integrable automorphic form f , and any pseudo-Eisenstein series ΨP
ϕ , with P a

parabolic subgroup,
〈f,ΨP

ϕ 〉ZAGk\GA = 〈cP f, ϕ〉ZANP
A M

P
k \GA

Proof. This is a standard winding/unwinding argument:

〈f,ΨP
ϕ 〉ZAGk\GA =

∫
ZAGk\GA

f(g)ΨP
ϕ (g) dg

=

∫
ZAGk\GA

f(g) ·
( ∑
γ∈Pk\Gk

ϕ(γg)
)
dg

=

∫
ZAPk\GA

f(g)ϕ(g) dg

=

∫
ZANkMk\GA

f(g)ϕ(g) dg

=

∫
ZANAMk\GA

∫
Nk\NA

f(ng)ϕ(ng) dn dg

=

∫
ZANAMk\GA

( ∫
Nk\NA

f(ng) dn
)
ϕ(g) dg

= 〈cP f, ϕ〉ZANP
A M

P
k \GA

Note. This “winding/unwinding” is a specific example of integrating over quotients. For a G a
topological group and H a closed subgroup,∫

G

f(g) dg =

∫
H\G

∫
H

f(hg) dh dg

as long as the modular functions are compatible. When the subgroup is discrete, we write the integral
over the subgroup as a sum.

From this adjointness relation, it quickly follows that a (square-integrable) automorphic form is a cusp
form if and only if it is orthogonal to all pseudo-Eisenstein series, i.e. the orthogonal complement to
the space of cusp forms is spanned by pseudo-Eisenstein series.

Further, we can use this adjointness relation to decompose the space spanned by pseudo-Eisenstein
series into orthogonal subspaces. In particular, if f is in the space spanned by pseudo-Eisenstein series,
then it quickly follows from the adjointness relation that f has cuspidal support P 2,1 or P 1,2 if and
only if it is orthogonal to all P 1,1,1 pseudo-Eisenstein series. So the orthogonal complement to cusp
forms decomposes into two orthogonal subspaces: the space spanned by P 1,1,1 pseudo-Eisenstein series,
and the space of automorphic forms with cuspidal support P 2,1 or P 1,2.
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We need to determine which pseudo-Eisenstein series are in the second subspace. Although we might
naively guess that all P 2,1 and P 1,2 pseudo-Eisenstein series have cuspidal support P 2,1 or P 1,2, this is
not the case. What is true is that a P 2,1 or P 1,2 pseudo-Eisenstein series with cuspidal data (i.e. one
whose data can be identified with a GL2 cusp form) has cuspidal support P 2,1 or P 1,2. (To show this
we need to compute the constant term along P 1,1,1 of such a pseudo-Eisenstein series. This
computation is not trivial to carry out, and it relies on the Bruhat decomposition of GL3. See the
appendix on constant terms for further details.) Any other P 2,1 or P 1,2 pseudo-Eisenstein series (i.e.
one with non-cuspidal data) can be written as the sum of a P 1,1,1 pseudo-Eisenstein series and a P 2,1 or
P 1,2 pseudo-Eisenstein series with cuspidal data. So the subspace consisting of automorphic forms with
cuspidal support P 2,1 or P 1,2 is spanned by P 2,1 and P 1,2 pseudo-Eisenstein series with cuspidal data.

As we will see, the space generated by P 1,2 pseudo-Eisenstein series is actually the same as the space
generated by P 2,1 pseudo-Eisenstein series. This is an example of a more general phenomenon:
pseudo-Eisenstein series of associate parabolics span the same space.

So we have the following decomposition of L2(ZAGk\GA) into orthogonal subspaces:

L2(ZAGk\GA) = (cfms)⊕ (span of P 1,1,1 ps-Eis)⊕ (span of P 2,1 ps-Eis, cspdl data)

2.2 Decomposing Pseudo-Eisenstein Series

While we have a fairly nice description of the non-cuspidal automorphic forms in L2(ZAGk\GA) in
terms of pseudo-Eisenstein series, we would prefer a decomposition in terms of irreducibles. Following
the GL2 case, we will decompose the pseudo-Eisenstein series into genuine Eisenstein series. (Since
Eisenstein series are images of principal series, they are eigenfunctions for Casimir and for the whole
center of the universal enveloping algebra. Typically principal series are irreducible, so Eisenstein series
typically generate irreducible representations.) Again, due to the plurality of parabolics in GL3, we
have several kinds of Eisenstein series in GL3. The definition for GL2 Eisenstein series given above
scales nicely to include all of these: for a parabolic P , the P -Eisenstein series is

Eχ =
∑

γ∈Pk\Gk

fχ(γg)

where fχ is a (spherical) vector in a representation χ of MP , extended to a P -representation by left
N -invariance, and induced up to G.

The key to obtaining the spectral decomposition for GL2 pseudo-Eisenstein series is that the Levi
component is a product of copies of GL1, allowing us to reduce to the spectral theory for GL1 (Mellin
inversion). For GL3 we are able to use a similar approach for minimal parabolic pseudo-Eisenstein
series, again because the Levi component is a product of copies of GL1. The same methods will
certainly not work for decomposing P 2,1 and P 1,2 pseudo-Eisenstein series, because in these cases the
Levi component contains a copy of GL2.

So we turn our attention first to the decomposition of the minimal parabolic pseudo-Eisenstein series.
We will need the functional equation of the Eisenstein series. Note that because of the increase in
dimension, the symmetry of the Eisenstein series is more complex. The Eisenstein series can no longer
be parameterized by one complex number s, since the data fχ for the Eisenstein series is on a product
of three copies of GL1. The symmetries of the Eisenstein series can be described in terms of the action
of the Weyl group W on the standard maximal torus A (which, in this case, is the same as the Levi
component M) on its Lie algebra a, and the dual space ia∗. For now, we give a minimal explanation of
this action, just enough to describe the constant term and the functional equations of the Eisenstein
series and use them in the spectral decomposition. See the appendices for further details on the
computation of constant terms and the derivation of the functional equations.

For GLn the standard maximal torus A is the product of n copies of GL1, and representations of A are
products of representations of GL1; in the unramified case, these representations are just y → ysi , for
complex si. The Weyl group W is the group of permutation matrices in GLn. It acts on A by
permuting the copies of GL1, and it acts on the dual in the canonical way, permuting the si, in the
unramified case.
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We now describe the constant term and the functional equations of the Eisenstein series. The constant
term of the Eisenstein series (along the minimal parabolic) has the form

cP (Eχ) =
∑
w∈W

cw(χ) · wχ

where wχ is the image of χ under the action of w and cw(χ) is a constant depending on w and χ with
c1(χ) = 1. The Eisenstein series has functional equations

cw(χ) · Eχ = Ewχ for all w ∈W

We start the decomposition of Ψϕ by using the spectral expansion of its data ϕ. Recall that ϕ is left
NA-invariant, so it is essentially a function on the Levi component, which is a product of copies of
k×\J. (By Fujisaki’s lemma, this is the product of a ray with a compact abelian group. To simplify the
present discussion we will assume that the compact abelian group is trivial, as is the case for number
fields with class number one, e.g. k = Q.) So spectrally decomposing ϕ is a higher-dimensional version
of Mellin inversion.

ϕ =

∫
〈ϕ, χ〉 · χdχ

Winding up,

Ψϕ(g) =

∫
ia∗
〈ϕ, χ〉 · Eχ(g) dχ

Note that in order for this to be valid, the parameters of χ must have Re(si)� 1. However, in order to
use the symmetries of the functional equations, we need the parameters to be on the critical line. In
moving the contours, we pick up some residues, which fortunately are constants. Breaking up the dual
space according to Weyl chambers and changing variables,

Ψϕ(g) − (residues) =
∑
w∈W

∫
1st Weyl chamber

〈ϕ,w χ〉 · Ewχ(g) dχ

Now using the functional equations,

Ψϕ(g) − (residues) =
∑
w∈W

∫
(1)

〈ϕ,w χ〉 · cw(χ)Eχ(g) dχ

=

∫
(1)

∑
w∈W
〈ϕ, cw(χ)wχ〉 · Eχ(g) dχ

We recognize the constant term of the Eisenstein series, and apply the adjointness relation∑
w∈W
〈ϕ, cw(χ)wχ〉 = 〈ϕ, cPEχ〉 = 〈Ψϕ, Eχ〉

So we have,

Ψϕ(g) =

∫
(1)

〈Ψϕ, Eχ〉 · Eχ(g) dχ + (residues)

Our next goal is to show that the remaining automorphic forms, namely those with cuspidal support
P 2,1 or P 1,2, can be written as superpositions of genuine P 2,1 Eisenstein series. To do this it suffices to
decompose P 2,1 and P 1,2 pseudo-Eisenstein series with cuspidal support. For this discussion we let
P = P 2,1 and Q = P 1,2.

We start by looking more carefully at pseudo-Eisenstein series with cuspidal data. The data for a P
pseudo-Eisenstein series is smooth, compactly supported, and left ZAM

P
k N

P
A -invariant. For now, we

assume that the data is spherical, i.e. right K-invariant. This means that this function is determined
by its behavior on ZAM

P
k \MP

A . In contrast to the minimal parabolic case, this is not a product of
copies of GL1, so we cannot simply use the GL1 spectral theory (Mellin inversion) to accomplish the
decomposition. Instead, this quotient is isomorphic to GL2(k)\GL2(A), so we will use the spectral
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theory for GL2. If η is the data for a P 2,1 pseudo-Eisenstein series Ψη, we can write η as a tensor
product f ⊗ ν on

ZGL2(A)GL2(k)\GL2(A) · ZGL2(k)\ZGL2(A)

Saying that the data is cuspidal means that f is a cusp form. Similarly the data ϕ = ϕF,s for a
P 2,1-Eisenstein series is the tensor product of a GL2 cusp form F and a character χs = | · |s on GL1.
We show that Ψf,ν is the superposition of Eisenstein series EF,s where F ranges over an orthonormal
basis of cusp forms and s is on a vertical line.

Using the spectral expansions of f and ν,

η = f ⊗ ν =

( ∑
cfms F

〈f, F 〉 · F
)
·
(∫

s

〈ν, χs〉 · χs ds
)

=
∑

cfms F

∫
s

〈ηf,ν , ϕF,s〉 · ϕF,s ds

So the pseudo-Eisenstein series can be re-expressed as a superposition of Eisenstein series.

Ψf,ν(g) =
∑

γ∈Pk\Gk

ηf,ν(γg)

=
∑

γ∈Pk\Gk

∑
cfms F

∫
s

〈ηf,ν , ϕF,s〉 · ϕF,s(γg) ds

=
∑

cfms F

∫
s

〈ηf,ν , ϕF,s〉
∑

γ∈Pk\Gk

ϕF,s(γg) ds

=
∑

cfms F

∫
s

〈ηf,ν , ϕF,s〉 · EF,s(g) ds

In fact the coefficient 〈η, ϕ〉GL2
is the same as the pairing 〈Ψη, Eϕ〉GL3

, since

〈Ψη, Eϕ〉 = 〈cP (Ψη), ϕ〉 = 〈η, ϕ〉

So the spectral expansion is

Ψf,ν =
∑

cfms F

∫
s

〈Ψf,ν , EF,s〉 · EF,s(g) ds

Notice that, so far, we have not had to shift the line of integration to the critical line 1
2 + iR.

It now remains to show that pseudo-Eisenstein series for the associate parabolic, Q = P 1,2, can also be
decomposed into superpositions of P -Eisenstein series. Notice that in the discussion above, when we
decomposed P -pseudo-Eisenstein series into genuine P -Eisenstein series, we did not use the functional
equation to fold up the integral, as in the case of minimal parabolic pseudo-Eisenstein series. For
maximal parabolic Eisenstein series, the functional equation does not relate the Eisenstein series to
itself, but rather to the Eisenstein series of the associate parabolic. We will use this functional equation
to obtain the decomposition of associate parabolic pseudo-Eisenstein series. For a derivation of the
functional equation, see the appendix. For now, we state the functional equation without proof:

EQF,s = bF,s · EPF,1−s

where bf,s is a meromorphic function that appears in the computation of the constant term along P of
the Q-Eisenstein series.

We consider a Q-pseudo-Eisenstein series ΨQ
f,ν with cuspidal data. By the same arguments used above

to obtain the decomposition of P -pseudo-Eisenstein series, we can decompose ΨQ
f,ν into a superposition

of Q-Eisenstein series.

ΨQ
f,ν(g) =

∑
cfms F

∫
s

〈ηf,ν , ϕF,s〉 · EQF,s(g)
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Now using the functional equation,

ΨQ
f,ν(g) =

∑
cfms F

∫
s

〈ΨQ
f,ν , bF,s · E

P
F,1−s〉 · bF,s · EPF,1−s =

∑
cfms F

∫
s

〈ΨQ
f,ν , E

P
F,1−s〉 · |bF,s|2 · EPF,1−s

So we have a decomposition of Q-pseudo-Eisenstein series (with cuspidal data) into P -Eisenstein series
(with cuspidal data). In order to use the functional equation we did have to move some contours, but
in this case there are no poles, so we do not pick up any residues.

We have described the spectral decomposition of L2(ZAGk\GA) as the direct sum/integral of
irreducibles. Any automorphic form ξ can be written as

ξ =
∑

GL3 cfms f

〈ξ, f〉 · f +
∑

GL2 cfms F

∫
s

〈ξ, E2,1
F,s〉 · E

2,1
F,s +

∫
(1)

〈ξ, E1,1,1
χ 〉 · E1,1,1

χ dχ +
〈ξ, 1〉
〈1, 1〉

Certainly this expansion converges in L2. To ensure more convergence, for example uniform
convergence on compact sets, additional conditions need to be imposed. The arguments given above,
proving the convergence of the SL2 spectral expansion under sufficient differentiability conditions,
generalize to GL3.

A. Appendices

Here we include some supplemental material, which may serve as a useful addendum to the discussions
above. In the first appendix, we provide the computations of some constant terms for GL3 Eisenstein
series using the Bruhat decomposition. The second appendix includes the derivation of the functional
equations for GL3 Eisenstein series from their constant terms.

A.1 Constant Terms of GL3 Eisenstein Series

Since the constant terms of GL3 Eisenstein series were used repeatedly in the discussion of the spectral
decomposition of GL3, we briefly discuss the way to obtain constant terms using the Bruhat
decomposition. Recall the Bruhat decomposition of GLn

G =
⋃
w∈W

PwQ =
⊔

w∈(W∩P )\W/(W∩Q)

PwQ

where W is the Weyl group and P and Q are parabolics.

To compute the constant term along P of a Q-Eisenstein series,

cP (EQϕ )(g) =

∫
NP

k \N
P
A

∑
γ∈Qk\Gk/Pk

∑
β∈Qk\QkγPk

ϕ(γβng) dn

=
∑

γ∈Qk\Gk/Pk

∫
NP

k \N
P
A

∑
β∈Qk\QkγPk

ϕ(γβng) dn

=
∑

w∈(W∩P )\W/(W∩Q)

∫
NP

k \N
P
A

∑
β∈Qk\QkwPk

ϕ(wβng) dn

=
∑

w∈(W∩P )\W/(W∩Q)

∫
NP

k \N
P
A

∑
β∈(w−1Qkw∩Pk)\Pk

ϕ(wβng) dn

Further computation is dependent on the choice of P and Q. We show the computations for several of
the constant terms for GL3 Eisenstein series.

First consider P = Q = P 1,1,1 the minimal parabolic. Then the constant term is of the form:

c1,1,1(E1,1,1
ϕ ) =

∑
w∈W

cw(χ) wχ where c1(χ) = 1
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when ϕ is in the principal series Iχ. We recall the computations that yield this conclusion.

The double coset space (W ∩P )\W/(W ∩P ) is the whole Weyl group W , and since the Levi component
is invariant under conjugation by elements of W , PwP = PwN for all w. So the constant term is

c1,1,1(E1,1,1
ϕ )(g) =

∑
w∈W

∫
Nk\NA

∑
β∈(w−1Pkw∩Nk)\Nk

ϕ(wβng) dn

For w = 1, ∫
Nk\NA

ϕ(ng) dn = vol(Nk\NA) · ϕ(g) = ϕ(g)

and for w = wo, the long Weyl element, the intersection w−1o Pkwo ∩Nk is trivial, so there is unwinding∫
Nk\NA

∑
γ∈Nk

ϕ(woγng) dn =

∫
NA

ϕ(wong) dn

and this integral factors over primes because ϕ does.

The integrals corresponding to the four other elements of the Weyl group have partial unwinding. First
consider w = σ, the element corresponding to the reflection of the first positive simple root. Then the
quotient (σ−1Nkσ ∩Nk)\Nk is isomorphic to the GL2 unipotent radical, here denoted N1,1. So the
integral is∫

Nk\NA

∑
γ∈(σ−1Nkσ∩Nk)\Nk

ϕ(σγng) dn =

∫
N1,1

k \N
1,1
A

∫
N2,1

k \N
2,1
A

∑
γ∈N1,1

k

ϕ(σγnug) du dn

=

∫
N2,1

k \N
2,1
A

∫
N1,1

A

ϕ(σnug) dn du

=

∫
N1,1

A

∫
N2,1

k \N
2,1
A

ϕ(uσng) du dn

= vol(N2,1
k \N

2,1
A )×

∫
N1,1

A

ϕ(σng) dn

=

∫
N1,1

A

ϕ(σng) dn

This computation relies on the facts that σN2,1σ−1 = N2,1 and ϕ is N2,1-invariant. This last integral
factors over primes.

We can compute the terms corresponding to the other Weyl elements similarly. For w = τ , the element
corresponding to the reflection of the second positive simple root,∫

N1,1
A

ϕ(τng) dn

For w = τσ, ∫
N2,1

A

ϕ(τσng) dn

Finally, for w = στ , ∫
N1,2

A

ϕ(στng) dn

These integrals factor over primes, and the local integrals are intertwining operators among principal
series: Tw,χv : Iχv → Iwχv . For example, consider the local integral for w = σ. Using right
Kv-invariance,

Tw,χvϕv(g) =

∫
Nv

ϕv(σng) dn =

∫
Nv

ϕv(σnngmg) dn =

∫
Nv

ϕv(σnmg) dn
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Changing variables n→ mgnm
−1
g and using the P -equivariance of ϕv by χv,

Tw,χv
ϕv(g) = δ(mg)

∫
Nv

ϕv(σmgn) dn = δ(mg)

∫
Nv

χv(σmgσ
−1)ϕv(σn) dn

Notice that this is the action of W on χv, so

Tw,χv
ϕv(g) = δ(mg) · σχv(mg)

∫
Nv

ϕv(σn) dn = δ(mg) · σχv(mg) · Tσ,χv
ϕv(1)

So the constant term is

c1,1,1(E1,1,1
ϕ )(g) =

∑
w∈W

(∏
v

Tw,χvϕv(1)

)
· δ(mg) · wχ(mg)

Defining cw(χ) to be the constant in front and renormalizing to eliminate the modular function, we
obtain the desired expression for the constant term:

c1,1,1(E1,1,1
ϕ )(g) =

∑
w∈W

cw(χ) · wχ(g)

Now we consider the case where P is the minimal parabolic and Q is one of the maximal parabolics,
say P 2,1. We consider Q-Eisenstein series with cuspidal data. The constant term c1,1,1(E2,1

ϕ ) is
identically zero. To see how this can be computed, recall from above,

c1,1,1(E2,1
ϕ )(g) =

∑
w∈(W∩P )\W/(W∩Q)

∫
NP

k \N
P
A

∑
β∈(w−1Qkw∩Pk)\Pk

ϕ(wβng) dn

As in the previous case, the Levi component of P is invariant under conjugation by W so
QwP = QwN , where N denotes the unipotent radical of P . The quotient (W ∩ P )\W/(W ∩Q) has
three distinct cosets, with representatives w = 1, τ, τσ. So,

c1,1,1(E2,1
ϕ ) =

∑
w=1,τ,τσ

∫
Nk\NA

∑
β∈(w−1Qkw∩Nk)\Nk

ϕ(wβng) dn

For w = 1, the integral is∫
Nk\NA

ϕ(ng) dn =

∫
N1,1

k \N
1,1
A

∫
N2,1

k \N
2,1
A

ϕ(nug) du dn

= vol(N2,1
k \N

2,1
A )×

∫
N1,1

k \N
1,1
A

ϕ(ng) dn

which is zero because ϕ is cuspidal. Similar computations show that the other two terms are zero as
well.

Next we discuss the case where P = Q is a maximal parabolic, say P 2,1. If the data ϕ for the
Eisenstein series is cuspidal, the constant term is just ϕ. From the initial computations,

c2,1(E2,1
ϕ )(g) =

∑
w∈(W∩P )\W/(W∩P )

∫
Nk\NA

∑
β∈(w−1Pkw∩Pk)\Pk

ϕ(wβng) dn

In this case, there are two double cosets, with representatives 1 and τ so,

c2,1(E2,1
ϕ )(m) =

∫
Nk\NA

ϕ(nm) dn +

∫
Nk\NA

∑
β∈(τ−1Pkτ∩Pk)\Pk

ϕ(τβnm) dn

Since ϕ is left N -invariant, the first term is just vol(Nk\NA) · ϕ(m). Showing that the second term is
zero takes a little more work. The quotient (τ−1Pkτ ∩ Pk)\Pk is the semidirect product of quotients of
Mk and Nk, so the sum over β can be written as a double sum over the Mk part, a quotient isomorphic
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to PGL2(k)\GL2(k), and the Nk part, a quotient by the unipotent radical U1
k which is zero in the (2, 3)

entry. ∫
Nk\NA

∑
β∈(τ−1Pkτ∩Pk)\Pk

ϕ(τβnm) dn =

∫
Nk\NA

∑
µ∈PGL2(k)\GL2(k)

∑
ν∈U1

k\Nk

ϕ(τµνng) dn

The sum over µ comes out of the integral, and the sum over ν unwinds yielding∑
µ∈PGL2(k)\GL2(k)

∫
U1

k\NA

ϕ(τµnm) dn

Since M normalizes N , a change of variables eliminates the µ, while introducing the modular function.
Letting U2 be the unipotent radical such that N2,1 = U1 × U2, the integral becomes∑

µ∈PGL2(k)\GL2(k)

δ(µ) ·
∫
U2

A

∫
U1

k\U
1
A

ϕ(τu1u2g) du1 du2

Since τU1 is a GL2 unipotent radical, the inner integral is a GL2 constant term, and this is zero,
because of the cuspidality of ϕ. So the P 2,1 constant term for a P 2,1-Eisenstein series with cuspidal
data is just equal to the term coming from the identity coset.

c2,1(Ψ2,1
ϕ ) = vol(N2,1

k \N
2,1
A ) · ϕ

Finally consider the case where P and Q are the associate (maximal) parabolics, say P = P 2,1 and
Q = P 1,2. We describe the constant terms, but omit the computations. Let EPϕ be a P -Eisenstein

series with cuspidal data ϕP on MP ,

ϕP (m) = ϕPf,s

(
A ∗

1

)
= f(A) · | detA|s

where f is a GL2 cusp form and s is a complex number. Associated to this P -Eisenstein series is a
Q-Eisenstein series EQϕ with data ϕQ on MQ,

ϕQ(m) = ϕQf,s

(
1 ∗

A

)
= f(A) · | detA|−s

Then the constant term along Q of the P -Eisenstein series is of the form

cP (EQϕ ) = c2,1(E1,2
ϕ ) = af,s · ϕQf,1−s

and similarly,
cQ(EPϕ ) = c1,2(E2,1

ϕ ) = bf,s · ϕPf,1−s
The coefficients af,s and bf,s are meromorphic functions of s.

A.2 Functional Equations of GL3 Eisenstein Series

Here we recall the derivation of the functional equations for GL3 Eisenstein series from their constant
terms. We set the discussion in GLn, since the same arguments work and are in fact clearer.

The functional equations for minimal parabolic spherical Eisenstein series are of the form

Eχ = A(χ,w) · Ewχ for all w ∈W

The existence of such equations follows from the functional equation of the GL2 Eisenstein series. The
key is that a GLn minimal parabolic Eisenstein series is the composition of an Eisenstein series for a
next-to-minimal parabolic Q with something isomorphic to a GL2 Eisenstein series.

Since the Weyl group is generated by reflections, it suffices to consider intertwining operators given by
a simple reflection: let σ be the Weyl element that flips the ith positive root, and fixes all other
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positive roots. The corresponding next-to-minimal parabolic, Q is strictly upper triangular, except for
the (i, i+ 1)th entry. The quotient Pk\Gk is the direct sum of Qk\Gk and Pk\Qk, which is a copy of
the GL2 quotient PGL2

(k)\GL2(k). So the Eisenstein series is an iterated sum:

Eχ(g) =
∑

γ∈Qk\Gk

∑
δ∈Pk\Qk

f(δγg)

Consider the subgroup H of GLn isomorphic to GL2 that has entries in the two-by-two block starting
at the (i, i)th entry. For fixed g in G = GLn, the map fg on H given by h −→ f(hg) is in the GL2

principal series Iχ (where χ is restricted to P ∩H). So, for fixed g ∈ G the series

Ẽχ,g(h) =
∑

δ∈Pk\Qk

fg(δh)

is a GL2 Eisenstein series. Parameterize χ by s = (s1, . . . , sn) ∈ Cn. Then the action of σ on χ
interchanges si and si+1. In the GL2 case, we usually take a quotient by the center, which enables us
to parameterize χ by one s ∈ C, and the action of σ is s→ 1− s. The familiar functional equation of
GL2 Eisenstein series can be restated as

Eχ(h) = A(χ, σ) · Eσχ(h)

Applying this to the iterated Eisenstein series, we obtain the functional equations for GLn
minimal-parabolic Eisenstein series.

Eχ(g) =
∑

γ∈Qk\Gk

Ẽχ,γg(h) = A(χ, σ)
∑

γ∈Qk\Gk

Ẽσχ,γg(h) = A(χ, σ) · Eσχ(g)

Now we recall the way to obtain the constants A(χ,w) from the constant term of Eχ along P ,

cP (Eχ) =
∑
σ∈W

cσ(χ) · σχ

Taking the constant term of both sides of the functional equation yields:

cP (Eχ) = A(χ,w) · cP (Ewχ)∑
σ∈W

cσ(χ) · σχ = A(χ,w)
∑
σ∈W

cσ(wχ) · σwχ∑
σ∈W

cσw(χ) · σwχ =
∑
σ∈W

A(χ,w) · cσ(wχ) · σwχ

Since the wχ are linearly independent,

cσw(χ) = A(χ,w) · cσ(wχ)

So, for all σ,w ∈W ,

A(χ,w) =
cσw(χ)

cσ(wχ)

and, in particular, setting σ = 1 gives
A(χ,w) = cw(χ)

So the functional equation becomes
Eχ = cw(χ) · Ewχ

Next we discuss the derivation of the functional equations for maximal parabolic Eisenstein series from
their constant terms. This argument parallels the argument for GL2, hinging on the facts that: (1)
apart from their constant terms, automorphic forms are of rapid decay on Siegel sets and (2) the

11



maximal parabolic Eisenstein series have the same Casimir eigenvalues. Using the constant terms
described above, in Siegel sets,

EPf,s = ϕPf,s + af,s · ϕQf,1−s + (rapid decay)

EQf,s = ϕQf,s + bf,s · ϕPf,1−s + (rapid decay)

Manipulate the second equation to obtain cancellation: send s→ 1− s and divide by bf,1−s.

1

bf,1−s
· EQf,1−s = ϕPf,s +

1

bf,1−s
· ϕQf,1−s + (rapid decay)

Now subtracting from EPf,s,

EPf,s −
1

bf,1−s
· EQf,1−s =

(
af,s −

1

bf,1−s

)
· ϕQf,1−s + (rapid decay)

For Re(1− s)� 0, this difference is in L2, and it is an eigenfunction for Casimir. By the
self-adjointness of Casimir, the eigenvalue must be negative real. However, there is a continuum of
eigenvalues for which this is not true, and so the identity principle implies that the difference is
identically zero, proving the functional equation.

EPf,s =
1

bf,1−s
· EQf,1−s
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