Spectral identities and exact formulas for counting lattice points in symmetric spaces

Amy DeCelles

University of Minnesota

November 8, 2009

Outline

Motivation: Lattice-point counting in Euclidean spaces

In \mathbb{R}^3

$$N(T) = \#\{\xi \in \mathbb{Z}^3 : |\xi| \le T\} = c \cdot T^3 + O(T^2)$$

- dominant term: volume of sphere, error term: surface area
- failure in hyperbolic spaces: volume proportionate to surface area

In G/K: spectral methods, an exact formula

- Spectral methods
 - instead of packing arguments
- Exact formula
 - instead of asymptotic formula
 - e.g. Riemann-von-Mangoldt
 - here: sum over lattice points and sum over automorphic spectrum
- Obtain exact formula from spectral identity using residue calculus (Perron-like identity).

Simple case first: hyperbolic 3-space

- Hyperbolic 3-space: $G/K = SL_2(\mathbb{C})/SU(2)$
 - $SL_2(\mathbb{C})$ is rank one
 - $SL_2(\mathbb{C})$ is complex
- Lattice: $\Gamma \subset SL_2(\mathbb{C})$, such that $\Gamma \backslash SL_2(\mathbb{C})$ is *compact*.

Simple case first: hyperbolic 3-space

- Hyperbolic 3-space: $G/K = SL_2(\mathbb{C})/SU(2)$
 - $SL_2(\mathbb{C})$ is rank one
 - $SL_2(\mathbb{C})$ is complex
- Lattice: $\Gamma \subset SL_2(\mathbb{C})$, such that $\Gamma \backslash SL_2(\mathbb{C})$ is *compact*.
- Basepoint: $z_o = 1 \cdot K$
- Complex Parameter: $s \in \mathbb{C}$

Outline

Spectral identity

$$\sum_{\gamma \in \Gamma} \frac{r_{\gamma} e^{-(2s-1)r_{\gamma}}}{(2s-1)\sinh r_{\gamma}} = \sum_{F} \frac{F(z_{o})^{2}}{(s_{F}(s_{F}-1) - s(s-1))^{2}}$$

where

- $r_{\gamma} = d(\gamma z_o, z_o)$
- F ranges over an orthonormal basis of automorphic forms
- $s_F(s_F-1)\in\mathbb{C}$ is the eigenvalue of Casimir on F

Apply integral transform

$$f \longrightarrow \frac{1}{2\pi i} \int_{\sigma+i\mathbb{R}} f(s) \frac{(2s-1)e^{2sX}}{s(s+1)(s+2)} ds$$

Left side
$$\longrightarrow \sum_{\gamma:r_{\gamma} < X} r_{\gamma} (1 + e^{-2(X - r_{\gamma})})^2$$

$$\text{Right side} \longrightarrow \sum_F F(z_o)^2 \cdot e^{2Xs_F} \cdot P_X(s_F)$$

where P_X is an explicit rational function in s_F .

The exact formula

Putting them together

$$\sum_{\gamma: r_{\gamma} < X} r_{\gamma} (1 + e^{-2(X - r_{\gamma})})^{2} = \sum_{F} F(z_{o})^{2} \cdot e^{2Xs_{F}} \cdot P_{X}(s_{F})$$

smoothed counting

automorphic spectrum

Outline

Obtaining the spectral identity

• automorphic PDE's (instead of e.g. RTF)

$$(\Delta - \lambda)^2 \; u_{\lambda}^{\rm afc} \; = \delta_{z_o}^{\rm afc}$$

- $\lambda = s(s-1) \in \mathbb{C}$
- Laplacian Δ : Casimir operator descended to G/K.
- Δ left G-invariant \Rightarrow descends to $\Gamma \backslash G/K$
- $\delta_{z_o}^{\text{afc}}$: automorphic delta function at z_o

Strategy

Find two different expressions for solution $u_{\lambda}^{\rm afc}$.

- Directly: harmonic analysis on $\Gamma \backslash G$
- "Automorphizing" a free-space solution:
 - δ_{z_o} bi-K-invariant, so harmonic analysis on $K\backslash G/K$ gives free-space solution
 - ullet average over left Γ -translates to get automorphic solution

Harmonic analysis of automorphic forms

• Γ compact \Rightarrow no continuous spectrum

$$f = \sum_{F} \langle f, F \rangle \cdot F$$

• For automorphic delta,

$$\langle \delta_{z_o}^{\rm afc}, F \rangle = F(z_o)$$

First expression for automorphic fundamental solution

• F an eigenfunction for $\Delta \Rightarrow$

$$u_{\lambda}^{\rm afc} = \sum_F \frac{F(z_o)}{(\lambda_F - \lambda)^2} \cdot F \;, \quad \lambda_F = {\rm eigenvalue \; of \; } \Delta \; {\rm on } \; F$$

• Apply at z_o :

$$u_{\lambda}^{\mathsf{afc}}(z_o) = \sum_{F} \frac{F(z_o)^2}{(s_F(s_F - 1) - s(s - 1))^2}$$

Harmonic analysis of bi-K-invariant functions

- $K \backslash G/K \approx A^+ \approx (0, +\infty)$
- Berezin-HC transform

$$\tilde{f}(\frac{1}{2} + i\xi) = \int_0^\infty f(a_r) \, \varphi_{\frac{1}{2} - i\xi}(a_r) \, \sinh^2 r \, dr$$

Inversion

$$f = \int_{-\infty}^{\infty} \tilde{f}(\frac{1}{2} + i\xi) \,\varphi_{\frac{1}{2} + i\xi} \,|\xi|^2 \,d\xi$$

Spherical functions

$$\varphi_s(a_r) = \frac{\sinh((2s-1)r)}{(2s-1)\sinh r}$$

Free-space solution

$$(\Delta - \lambda)^2 v_{\lambda} = \delta_{z_o}$$

• δ_{z_o} bi-K-invariant

$$\tilde{\delta}_{z_o} = \varphi_{\frac{1}{2} - i\xi}(1) = 1$$

• φ_s an eigenfunction for Δ with eigenvalue $\lambda_s = s(s-1)$

$$\Rightarrow v_{\lambda} = \int_{-\infty}^{\infty} \frac{1}{(\lambda_{\frac{1}{2} + i\xi} - \lambda)^2} \cdot \varphi_{\frac{1}{2} + i\xi} |\xi|^{-2} d\xi$$

Residue calculus ⇒

$$v_{\lambda}(a_r) = \frac{re^{-(2s-1)r}}{(2s-1)\sinh r}, \quad \lambda = s(s-1)$$

Second expression for automorphic fundamental solution

Automorphize:

$$v^{\mathsf{afc}}_{\lambda} = \sum_{\gamma \in \Gamma} \gamma \circ v_{\lambda}$$

Apply at z_o ($a_r = a_o = 1$):

$$v_{\lambda}^{\mathsf{afc}}(z_o) = \sum_{\gamma \in \Gamma} \frac{r_{\gamma} e^{-(2s-1)r_{\gamma}}}{(2s-1)\sinh r_{\gamma}} \;, \quad r_{\gamma} = d(\gamma z_o, z_o)$$

Spectral identity

Equate two expressions for automorphic fundamental solution:

$$v_{\lambda}^{\rm afc} \ = \ u_{\lambda}^{\rm afc}$$

$$\sum_{\gamma \in \Gamma} \frac{r_{\gamma} e^{-(2s-1)r_{\gamma}}}{(2s-1)\sinh r_{\gamma}} = \sum_{F} \frac{F(z_{o})^{2}}{(s_{F}(s_{F}-1) - s(s-1))^{2}}$$

Outline

Lattice points in symmetric spaces

What is needed to do this for more general G/K? e.g. $G = GL_3$?

- spectral identity
- integral transform

Spectral identity

To obtain the spectral identity we need

- harmonic analysis of automorphic forms
- harmonic analysis of bi-K-invariant functions

Harmonic analysis of automorphic forms

For GL_3 ,

$$\begin{split} f &= \sum_{GL_3 \text{ cfms } F} \langle f, F \rangle \cdot F + \langle f, 1 \rangle \\ &+ \int_{\mathfrak{a}_+^*} \langle f, E_\chi^{\min} \rangle \cdot E_\chi^{\min} \, d\chi \\ &+ \sum_{GL_2 \text{ cfms } \phi} \int_{\frac{1}{2} + i \mathbb{R}} \langle f, E_{s,\phi}^{2,1} \rangle \cdot E_{s,\phi}^{2,1} \, ds \end{split}$$

Spherical transform, inversion

- $K \backslash G/K \approx A^+ \approx (\text{product of rays})$
- Spherical transform

$$\tilde{f} = \int_{G} f \cdot \overline{\varphi}_{\rho + i\xi} \, dg$$

where ρ is the half sum of positive roots, $\xi \in \mathfrak{a}^*$

Spherical inversion

$$f = \int_{\rho + i\mathfrak{a}^*} \tilde{f} \cdot \varphi_{\rho + i\xi} \cdot |\mathbf{c}(\rho + i\xi)|^{-2} d\xi$$

Zonal spherical functions

- Complex groups: spherical functions are elementary.
- λ^{th} spherical function $(\lambda \in \mathfrak{a}^*)$

$$\varphi_{\lambda} = \frac{\pi(\rho)}{\pi(i\lambda)} \cdot \frac{\sum \det(w) \cdot e^{wi\lambda}}{\sum \det(w) \cdot e^{w\rho}}$$

- summing over $w \in \mathsf{Weyl}$ group (permutations), so $\det(w)$ is just ± 1
- $\pi(\lambda)$ is the product of all $\langle \alpha, \lambda \rangle$'s, for positive roots α
- The factor out front is the c-function.

Spectral identity for G/K

To get spectral identity:

- construct automorphic fundamental solution u_λ^{afc}
- construct free-space fundamental solution v_{λ} and automorphize: $v_{\lambda}^{\rm afc}$

But: explicit expression for free-space fundamental solution?

spherical inversion is an integral over several complex parameters

Also: choices for differential operator

 Casimir does not generate the center of the universal enveloping algebra.

Integral transform?

In simple case,

- integral transform: counting info from spectral identity
 - FT of $\frac{1}{x}$ is Heaviside
 - cut off terms outside certain radius

In higher rank,

 integral transform? ... FT of characteristic function of positive Weyl chamber?

Further reading

Lattice-point counting (asymptotics)

- Patterson 1975, Levitan 1987, Lax-Phillips 1982,
 Bruggeman-Miatello-Wallach 1999, Gorodnik-Nevo 2010
- Iwaniec's book (Spectral Methods . . . , 2002)

Riemann-von-Mangoldt

Freitag & Busam's book (Complex Analysis, 2005)

Spectral theory of automorphic forms

books: Langlands (1976), Moeglin-Waldspurger (1995)

Zonal spherical functions

• books: Helgason (1984), Knapp (1986), Varadarajan (1989)

PDE's vs RTF

• Diaconu-Garrett 2009 (two papers)