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Compute by hand the (well-known) SL2 spherical functions from their integral representations (as an
alternative to solving the differential equation.)

1. Explicit integral representation

We show how to obtain an explicit integral representation for the elementary spherical functions, by
left K-averaging the spherical vector in a principal series.

We model the principal series Iχ by functions on G that are left P -equivariant by a right N -invariant
character χ on P . The spherical vector fo in Iχ is right K-invariant, so is unique up to constant
multiples. In fact, for g = nak,

fo(g) = fo(nak) = fo(na) = χ(na) = χ(a) = χ(A(g))

where A(g) denotes the A-part of g in the NAK Iwasawa decomposition. We obtain the spherical
function by averaging left K-translates of the spherical vector:

ϕχ(g) =
∫
K

fo(kg) dk

This is clearly bi-K-invariant, so, because of the Cartan decomposition G = KA+K, it suffices to
consider g = a in A+.

ϕχ(a) =
∫
K

fo(ka) dk =
∫
K

χ(A(ka)) dk

Recall that, using the Bruhat decomposition G = tPwN for P the minimal parabolic, we may
transform an integral over K to an integral over Nop, the opposite unipotent radical.∫

K/M

f(k) dk =
∫
Nop

f(κ(n)) δ(A(n)) dn

where κ(g) denotes the Iwasawa K-part of g, and δ = e2ρ is the modular function of P .

Note. This is slightly different from the formula derived in the previous document, where I used
Iwasawa decomposition KAN . For computing the spherical function we need to use NAK, unless we
want to model the principal series by functions that are right P -equivariant by a character.

Using this transformation,

ϕχ(a) =
∫
Nop

χ
(
A(κ(n)a)

)
δ(A(n)) dn

Elementary Iwasawa decomposition computations enable us to re-express this integral in such a way as
to avoid finding the K-part of n. (See Jorgenson-Lang, Spherical Inversion on SLn(R), IV.4.)

First we compute the A-part of gh for any g = nak any h, with kh = n′a′k′.

gh = (nak)h = na(n′a′k′) = nan′(a−1a)a′k′ = n(an′a−1)(aa′)k′

Since A normalizes N , the A-part of gh is

A(gh) = A(g)A(κ(g)h)

Applying this property to g = n and h = a,

A(κ(n)a) = A(n)−1A(na)

So the integral for the spherical function can be rewritten.

ϕχ(a) =
∫
Nop

χ(A(n)−1A(na)) δ(A(n)) dn =
∫
Nop

χ(A(na))
χ(A(n))

δ(A(n)) dn
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Note. The formula in Jorgenson-Lang is slightly different, because they normalize ϕχ differently.

2. Evaluating the integrals, in the case of SL2.

In the case of SL2, we can compute the A-part of an arbitrary matrix by hand. Here we only need to
compute the A-part of n and an.

For SL2(R), take

nx =
(

1 0
x 1

)
=
(

1 ξ
1

)(
η

η−1

)(
cos θ sin θ
− sin θ cos θ

)
We can solve for η in terms of x, and compute the Iwasawa A-part of n. Similarly, we compute the
A-part of na:

A(nx) =
(

1/
√
x2 + 1 √

x2 + 1

)
A(nxay) =

(
y/
√
x2y4 + 1

y−1
√
x2y4 + 1

)

Parametrize χ by s ∈ C and evaluate χ and δ.

χ(aη) = e(ρ+iλ)(log aη) = η2s+1 and δ(aη) = e2ρ(log aη) = η2

So the integral becomes

ϕχ(a) =
∫
Nop

χ(A(na))
χ(A(n))

δ(A(n)) dn

=
∫

R

(
y/
√
x2y4 + 1

1/
√
x2 + 1

)2s+1 1
x2 + 1

dx

= y2s+1

∫
R

( √
x2 + 1√
x2y4 + 1

)2s+1 1
x2 + 1

dx

This integral is not elementary. (It should be a K-Bessel function.)

Now consider the case of SL2(C).

nz =
(

1 0
z 1

)
=
(

1 ξ
1

)(
η

η−1

)(
α β
−β̄ ᾱ

)
Solve for the Iwasawa A-parts of n and na.

A(nz) =
(

1/
√
|z|2 + 1 √

|z|2 + 1

)
A(nzay) =

(
y/
√
y4|z|2 + 1

y−1
√
y4|z|2 + 1

)

Parametrize χ by s ∈ C and evaluate χ and δ.

χ(aη) = e(ρ+iλ)(log aη) = η2s+2 and δ(aη) = e2ρ(log aη) = η4

So the spherical function is

ϕχ(a) =
∫

C

(
y2
/

(y4|z|2 + 1)
1
/

(|z|2 + 1)

)s+1 1
(|z|2 + 1)2

dz

= y2s+2

∫
C

(
|z|2 + 1
y4|z|2 + 1

)s+1 1
(|z|2 + 1)2

dz

= 2π y2s+2

∫ ∞
0

(
u2 + 1
y4u2 + 1

)s+1
u

(u2 + 1)2
du

= 2π y2s+2

∫ ∞
0

(
u2 + 1
y4u2 + 1

)s−1
u

(y4u2 + 1)2
du
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For the moment, we ignore the factors out front and just consider the integral. Let A = y4.

I =
∫ ∞

0

(
u2 + 1
Au2 + 1

)s−1
u

(Au2 + 1)2
du

Make a substitution

v =
u2 + 1
Au2 + 1

dv = 2(1−A) · u

(Au2 + 1)2
du

and use the identity
Γ(s)
zs

=
∫ ∞

0

tse−tz dtt

The integral becomes

I =
1

2(1−A)

∫ 1/A

1

vs−1 dv

=
1

2(1−A)

∫ 1/A

1

1
Γ(1− s)

∫ ∞
0

t1−s e−tv dtt dv

=
1

2(1−A)
· 1

Γ(1− s)

∫ ∞
0

t1−s
∫ 1/A

1

e−tv dv dtt

=
1

2(1−A)
· 1

Γ(1− s)

∫ ∞
0

t1−s
(

1
t e
−tv − 1

t e
−t/A) dt

t

=
1

2(1−A)
· 1

Γ(1− s)

(∫ ∞
0

t−se−tv dtt −
∫ ∞

0

t−se−t/A dt
t

)
Again using the identity with the Gamma function, this is

I =
1

2(1−A)
· 1

Γ(1− s)

(
Γ(−s)− Γ(−s)

(1/A)−s

)
=

1
2(1−A)

· Γ(−s)
Γ(1− s)

(1−A−s)

=
1−A−s

2s(A− 1)

Restoring the factors out front, and recalling that A = y4, we can see that the spherical function is

ϕχ(ay) = 2π · y2s+2 · 1− y−4s

2s(y4 − 1)

=
π

s
· y2s+2 · 1− y−4s

y4 − 1

=
π

s
· y2s+2 · y

−2s(y2s − y−2s)
y2(y2 − y−2)

=
π

s
· y

2s − y−2s

y2 − y−2

=
π

s
· χ(ay)− χ−1(ay)
δ1/2(ay)− δ−1/2(ay)

If we let y = er/2, so that r is the Cartan radius, this is

ϕs(r) =
π

s
· sinh(sr)

sinh(r)
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