Unbounded Operators on Hilbert Spaces

A. DeCelles Notes on unbounded operators on Hilbert spaces Document created: 07/12/2013 Last updated: 08/06/2016

These expository notes were written in an effort to understand some results in an appendix of a paper of Rudnick and Ueberschär [4] on eigenvalues of the point scatterer on the torus. For the most part, we follow the exposition in Garrett's vignettes [1, 2]. See also Reed-Simon [3].

Let V be a Hilbert space and D a subspace. A linear map $T: D \to V$ called an *unbounded operator on* V. This terminology is misleading since T is not necessarily defined on all of V and T may or may not be bounded. We denote the domain, D, of T as Dom(T). Specifying the domain is an essential part of defining an unbounded operator. Often, but not always, the domain D is chosen to be dense in V. Usually, T is not continuous when D is given the subspace topology from V.

An unbounded operator on V is closed (or graph-closed) if its graph is closed in $V \oplus V$. An unbounded operator T is closable if there is an operator, the closure \overline{T} of T, whose graph is the closure of the graph of T.

For everywhere-defined linear operators the notion of closedness coincides with that of continuity: a continuous linear operator has a closed graph, and, by the Closed Graph Theorem, an everywhere-defined linear operator with a closed graph is continuous. In contrast, unbounded operators with closed graphs are *not* necessarily continuous.

An unbounded operator T_2 is an *extension of* an unbounded operator T_1 if it has a larger domain and it agrees with T_1 on the domain of T_1 , i.e.

$$\operatorname{Dom}(T_2) \supset \operatorname{Dom}(T_1)$$
 and $T_2|_{\operatorname{Dom}(T_1)} = T_1$

The expression $T_2 \supset T_1$ denotes that T_2 is an extension of T_1 .

1 Adjoints of unbounded operators

An unbounded operator T', D' is a *subadjoint* to T, D, when

$$\langle Tv, w \rangle = \langle v, T'w \rangle$$
 for all $v \in D, w \in D'$

The unique maximal element among all subadjoints is the *adjoint* T^* of T; the uniqueness and existence of the adjoint requires proof.

Proposition. Let T, D be an unbounded, densely defined operator on a Hilbert space V.

- 1. There is a unique maximal T^*, D^* among all subadjoints to T, D.
- 2. T^* is closed, in the sense that its graph is closed in $V \oplus V$.
- 3. T^* is characterized by its graph:

$$\operatorname{Graph}(T^*) = \left(U(\operatorname{Graph}(T)) \right)^{\perp}$$

where U is the Hilbert space isomorphism $V \oplus V \to V \oplus V$ given by $U(v \oplus w) = -w \oplus v$.

Proof. Note that $V \oplus V$ is a Hilbert space with inner product $\langle v \oplus w, v' \oplus w' \rangle_{V \oplus V} = \langle v, v' \rangle_V + \langle w, w' \rangle_V$. When the Hilbert space is clear from context, we drop the subscripts from \langle , \rangle .

We observe that the adjointness condition can be rewritten as an orthogonality condition, in the following way. For a given $w \in V$, the condition that

$$\langle Tv, w \rangle = \langle v, T'w \rangle$$
 for all $v \in D$

is equivalent to

$$0 = -\langle Tv, w \rangle + \langle v, T'w \rangle \quad \text{for all } v \in D$$

Rewriting the right side,

$$-\langle Tv,w\rangle + \langle v,T'w\rangle = \langle -Tv,w\rangle + \langle v,T'w\rangle = \langle (-Tv)\oplus v,w\oplus T'w\rangle = \langle U(v\oplus Tv),w\oplus T'w\rangle$$

This shows that, for a given $w \in V$,

$$\langle Tv, w \rangle = \langle v, T'w \rangle$$
 for all $v \in D$ \iff $w \oplus T'w \in (U(\operatorname{Graph}(T)))^{\perp}$

Thus an operator T', D' is subadjoint to T, D if and only if its graph lies in $(U(\operatorname{Graph}(T)))^{\perp}$. Constructing an operator whose graph equals $(U(\operatorname{Graph}(T)))^{\perp}$ proves the existence and uniqueness of the adjoint, as follows.

To a given $w \in V$, we wish to associate $w' \in V$ such that $w \oplus w' \in (U(\operatorname{Graph}(T)))^{\perp}$, i.e. such that $\langle Tv, w \rangle = \langle v, w' \rangle$ for all $v \in D$. This may not always be possible; but the vectors w for which is *is* possible constitute the domain of the operator we construct. Since T is densely defined, we can be sure that there is *at most* one such w', for

$$\langle Tv, w \rangle = \langle v, w'_1 \rangle = \langle v, w'_2 \rangle$$
 for all $v \in D$ (dense in V) $\implies w'_1 = w'_2$

Thus we have a well-defined map $w \mapsto w'$ on a subset of V. This map is certainly linear, for, if $w_1 \mapsto w'_1$ and $w_2 \mapsto w'_2$ and $\alpha, \beta \in \mathbb{C}$, then, on one hand,

$$\alpha \langle Tv, w_1 \rangle + \beta \langle Tv, w_2 \rangle = \langle Tv, \alpha w_1 + \beta w_2 \rangle$$

and, on the other hand,

$$\alpha \langle Tv, w_1 \rangle + \beta \langle Tv, w_2 \rangle = \alpha \langle v, w_1' \rangle + \beta \langle v, w_2' \rangle = \langle v, \alpha w_1' + \beta w_2' \rangle$$

so $\alpha w_1 + \beta w_2 \mapsto \alpha w'_1 + \beta w'_2$. By construction, its domain is the unique maximal domain among the domains of subadjoints. Since its graph is precisely $(U(\operatorname{Graph}(T)))^{\perp}$, and since orthogonal complements are closed, the constructed operator is a (graph-)closed operator.

Question. From this proof it seems that the domain of the adjoint T^* of T consists precisely of those vectors $w \in V$ for which there exists $w' \in V$ such that $\langle Tv, w \rangle = \langle v, w' \rangle$ for all $v \in \text{Dom}(T)$. Is this correct?

2 Symmetric and self-adjoint unbounded operators

An unbounded operator is symmetric when $T \subset T^*$, i.e. when (i) the domain of its adjoint is at least as large as the domain of T and (ii) T and its adjoint agree on the domain of T. Note that this implies

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$
 for all $v, w \in \text{Dom}(T) \subset \text{Dom}(T^*)$

An unbounded operator is *self-adjoint* when $T = T^*$, i.e. when (i) the domain of its adjoint, which is maximal among domains of subadjoints, is *precisely* the domain of T and (ii) T and its adjoint agree on the domain of T. Note that this implies

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$
 for all $v, w \in \text{Dom}(T) = \text{Dom}(T^*)$

For bounded operators, these two notions are the same. For symmetric unbounded operators, we wish to construct self-adjoint extensions. The Friedrichs extension is one such, as are the members of the family of extensions, parametrized by a unitary group and described in [?], which we discuss below.

We will need the following property of symmetric operators below.

Proposition. The eigenvalues of a symmetric operator are *real*.

Proof. Let S be a densely defined symmetric operator. Suppose $Sv = \lambda v$ for some $0 \neq v \in \text{Dom}(S)$. Then, on one hand,

$$\langle Sv, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle$$

and, on the other hand,

$$\langle Sv, v \rangle = \langle v, Sv \rangle = \langle v, \lambda v \rangle = \lambda \langle v, v \rangle$$

Since $v \neq 0$, $\lambda = \overline{\lambda}$, i.e. λ is real.

3 Symmetric extensions of symmetric operators

Note that the adjoint T^* of a densely defined symmetric operator T is a closed extension of T. However, T^* need not be symmetric. For T^* to be symmetric $(T^* \subset T^{**})$ it would have to be self-adjoint $(T^* = T^{**})$, since, in general, $T^{**} \subset T^*$ when T is symmetric, as shown in the following proposition.

Proposition. Let T be a densely defined symmetric operator. Then T is closable with $\overline{T} = T^{**}$. Further, the closure \overline{T} is symmetric, $T \subset \overline{T} \subset T^*$, and $\overline{T}^* = T^*$.

Proof. Recalling that the graph of an adjoint S^* of a linear operator is

$$\operatorname{Graph}(S^*) = \left(U(\operatorname{Graph} S) \right)^{\perp}$$

where $U: V \otimes V \to V \otimes V$ is given by $v \otimes w \mapsto -w \otimes v$, and using the fact that, for any subspace X of $V \oplus V$, $(U(X))^{\perp} = U^{-1}(X^{\perp})$, we can see that the graph of T^{**} is the closure of the graph of T:

$$\operatorname{Graph}(T^{**}) = \left(U(\operatorname{Graph} T^*) \right)^{\perp} = \left(U\left(\left(U(\operatorname{Graph} T) \right)^{\perp} \right) \right)^{\perp} = (\operatorname{Graph} T)^{\perp \perp} = \overline{(\operatorname{Graph} T)}$$

Thus $T^{**} = \overline{T}$, and T is closable.

Since the closure of an operator can be characterized as the minimal closed extension and since T^* is a closed extension of T, we have $T \subset \overline{T} \subset T^*$.

We can see that \overline{T} is symmetric, since, for all $v, w \in \text{Dom}(\overline{T}) \subset \text{Dom}(T^*)$,

$$\langle \overline{T}v, w \rangle = \langle T^{**}v, w \rangle = \langle v, T^*w \rangle = \langle v, \overline{T}w \rangle$$

To see that the adjoint \overline{T}^* of the closure is the same as the adjoint of T, we look at the graph of $\overline{T}^* = T^{***}$. By the argument above, the graph of $(T^*)^{**}$ is the closure of the graph of T^* . Since the graph of T^* is closed, this means that the graph of T^{***} is the graph of T^* . To summarize:

$$\operatorname{Graph}(\overline{T}^*) = \overline{(\operatorname{Graph}(T^*))} = \operatorname{Graph}(T^*)$$

Thus the adjoint of \overline{T} is simply T^* .

Note. In fact, any symmetric extension S of T is a restriction of the adjoint T^* , as follows. First, $Dom(S) \subset Dom(T^*)$, since S is subadjoint to T. And, for all $v \in Dom(T)$, $w \in Dom(S)$,

$$\langle v, Sw \rangle = \langle Sv, w \rangle = \langle Tv, w \rangle = \langle v, T^*w \rangle$$

The density of Dom(T) implies that $T^*w = Sw$, proving that T^* agrees with S on the domain of S.

Note. Although T^{**} is a closed, symmetric extension of T, it is typically not self-adjoint. If it *is* self-adjoint, it is the *unique* self-adjoint extension of T, as follows. Suppose S is a self-adjoint extension of T. Then S is closed, and thus an extension of \overline{T} . It is also a restriction of T^* , since it is symmetric. Since taking adjoints is inclusion-reversing,

$$T \subset \overline{T} \subset S = S^* \subset \overline{T}^* \subset T^*$$

Self-adjointness of \overline{T} means $\overline{T} = \overline{T}^*$, forcing $\overline{T} = S$.

A symmetric, densely defined operator is *essentially self-adjoint* if it has a unique self-adjoint extension. Before discussing criteria for essential self-adjointness and for the existence of self-adjoint extensions in general, we discuss one construction of self-adjoint extensions, due to Friedrichs.

4 Friedrichs' self-adjoint extension

The *Friedrichs extension* of a positive, symmetric, densely defined operator is a self-adjoint extension, which can be understood as an extension "by closure" in a certain sense. In fact, this construction works for a broader class of symmetric, densely defined operators, those that are *semi-bounded*.

A symmetric operator T is *lower semi-bounded* if there is a real constant c such that

$$\langle Tv, v \rangle \geq c \langle v, v \rangle$$
 for all $v \in \text{Dom}(T)$

Positivity is a special case of lower semi-boundedness, with c = 0. A symmetric operator is *upper semi-bounded* if there is a real constant C such that

$$\langle Tv, v \rangle \leq C \langle v, v \rangle$$
 for all $v \in \text{Dom}(T)$

Note that every semi-bounded operator can be easily obtained from a positive operator by multiplying by (-1), if necessary, and adding an appropriate constant: if T is lower semi-bounded with lower bound c, then T - c is positive; if T is upper semi-bounded with upper bound C, then C - T is a positive operator.

Friedrichs' construction of self-adjoint extensions is most easily described for lower semi-bounded operators with lower bound c = 1. We will briefly describe the Friedrichs extension, before giving the full construction in the proof of the theorem below.

Let T be a symmetric, densely defined operator on a Hilbert space V with inner product \langle , \rangle . Suppose T is lower semi-bounded with lower bound c = 1, i.e.

$$\langle Tv, v \rangle \ge \langle v, v \rangle$$
 for all $v \in \text{Dom}(T)$

We will define a *new* inner product \langle , \rangle_1 on Dom(T) by

$$\langle v, w \rangle_1 = \langle Tv, w \rangle = \langle v, Tw \rangle$$
 for all $v, w \in \text{Dom}(T)$

Let V^1 be the Hilbert space completion of Dom(T) with respect to the topology induced by \langle , \rangle_1 . Thus Dom(T) is a dense subspace of V^1 , with respect to the \langle , \rangle_1 -topology, in addition to being a dense subspace of V, with respect to the \langle , \rangle -topology. The \langle , \rangle_1 -topology is *finer* than the \langle , \rangle -topology, so V^1 is a closed subspace of V.

Note. In an extended sense, \langle , \rangle_1 makes sense on $V \times \text{Dom}(T)$ and $\text{Dom}(T) \times V$: for all $h \in V$, $v \in \text{Dom}(T)$, we can define $\langle v, h \rangle_1 = \langle Tv, h \rangle$ and $\langle h, v \rangle_1 = \langle h, Tv \rangle$.

The Friedrichs extension \tilde{T} of T will be the unique self-adjoint extension of T with domain inside V^1 . In particular, we will see that an element $w \in V$ is in $\text{Dom}(\tilde{T})$ precisely if there is an element $h \in V$ such that $\langle v, h \rangle = \langle v, w \rangle_1$ for all $v \in V^1$; in this case $\tilde{T}(w) = h$. Thus we have

$$\langle Tv, w \rangle = \langle v, Tw \rangle = \langle v, w \rangle_1$$
 for all $v, w \in \text{Dom}(T)$

Note. In fact, asymmetric versions are also true: $\langle \widetilde{T}v, w \rangle = \langle v, w \rangle_1$ for all $v \in \text{Dom}(\widetilde{T})$ and $w \in V^1$, and similarly $\langle v, \widetilde{T}w \rangle = \langle v, w \rangle_1$ for all $v \in V^1$ and $w \in \text{Dom}(\widetilde{T})$.

Theorem (Friedrichs). Every semi-bounded, symmetric, densely defined operator has a self-adjoint extension.

Proof. As discussed above, it suffices to consider a lower semi-bounded, symmetric, densely defined operator T, with lower bound c = 1. We will define an injective bounded linear operator B, whose inverse, defined on the image of B, will be the Friedrichs extension of T.

As in the discussion above, define \langle , \rangle_1 on Dom(T) by $\langle v, w \rangle_1 = \langle Tv, w \rangle = \langle v, Tw \rangle$. We verify that \langle , \rangle_1 is an inner product on Dom(T).

Positivity and nondegeneracy follow from the lower bound for $T: \langle v, v \rangle_1 = \langle Tv, v \rangle \geq \langle v, v \rangle \geq 0$ for all $v \in \text{Dom}(T)$, and

$$0 = \langle v, v \rangle_1 = \langle Tv, v \rangle \ge \langle v, v \rangle \implies v = 0$$

Conjugate symmetry follows from the symmetry of T and the conjugate symmetry of \langle , \rangle :

$$\langle v, w \rangle_1 = \langle Tv, w \rangle = \langle v, Tw \rangle = \overline{\langle Tw, v \rangle} = \overline{\langle w, v \rangle}_1$$
 for all $v, w \in \text{Dom}(T)$

Lastly, sesquilinearity follows from the linearity of T and the sesquilinearity of \langle , \rangle .

As above, let V^1 be the Hilbert space completion of Dom(T) with respect to the topology induced by \langle , \rangle_1 .

Claim. The abstract Hilbert space completion V^1 can be identified with the *closure* of Dom(T) with respect to the topology induced by \langle , \rangle_1 , we may consider it as a subspace of V.

We will define a map $B: V \to V^1$ as follows: for any $h \in V$, Bh will be the unique element of V^1 satisfying

$$\langle v,h\rangle = \langle v,Bh\rangle_1$$
 or, equivalently, $\langle h,v\rangle = \langle Bh,v\rangle_1$ for all $v \in V^1$

That such an element exists requires proof.

Claim. The map $B: V \to V^1$ and is a well-defined, bounded linear operator. Further,

- 1. B is positive and symmetric (with respect to \langle , \rangle) and thus self-adjoint,
- 2. B is injective, and
- 3. the image of B is dense with respect to both the topology induced by \langle , \rangle and the topology induced by \langle , \rangle_1 .

Proof. We start with well-definedness. For any $h \in V$, consider the linear functional $\lambda_h : v \mapsto \langle v, h \rangle$ restricted to V^1 . We show that λ_h is bounded on V^1 , and thus a *continuous* linear functional on V^1 , as follows.

$$\|\lambda_h\|_{\text{op}} = \sup_{v \in V^1} \frac{|\lambda_h(v)|}{\|v\|_1} = \sup_{v \in V^1} \frac{|\langle v, h \rangle|}{\|v\|_1} \le \sup_{v \in V^1} \frac{\|v\| \cdot \|h\|}{\|v\|_1} \le \sup_{v \in V^1} \frac{\|v\|_1 \cdot \|h\|}{\|v\|_1} = \|h\|$$

Thus $\lambda_h \in (V^1)^*$. Since V^1 is a Hilbert space, the Riesz Representation Theorem implies that there is a unique $w \in V^1$ such that $\lambda_h(v) = \langle v, w \rangle_1$. Let B(h) = w. Then B is a well-defined map $V \to V^1$.

Linearity of *B* follows easily from the sesquilinearity of \langle , \rangle and \langle , \rangle_1 : for $h_1, h_2 \in V$ and $\alpha, \beta \in \mathbb{C}$, $\langle v, B(\alpha h_1 + \beta h_2) \rangle_1 = \langle v, \alpha h_1 + \beta h_2 \rangle = \bar{\alpha} \langle v, h_1 \rangle + \bar{\beta} \langle v, h_2 \rangle = \bar{\alpha} \langle v, Bh_1 \rangle_1 + \bar{\beta} \langle v, Bh_2 \rangle_1 = \langle v, \alpha Bh_1 + \beta Bh_2 \rangle_1$ for all $v \in V^1$. Thus $B(\alpha h_1 + \beta h_2) = \alpha B(h_1) + \beta B(h_2)$. Positivity of B follows from the positivity of \langle , \rangle_1 : for any $h \in V$, $Bh \in V^1$, so

$$\langle Bh, h \rangle = \langle Bh, Bh \rangle_1 \ge 0$$

Symmetry of B follows from the conjugate symmetry of \langle , \rangle_1 and \langle , \rangle : for $h_1, h_2 \in V$,

$$\langle Bh_1, h_2 \rangle = \langle Bh_1, Bh_2 \rangle_1 = \overline{\langle Bh_2, Bh_1 \rangle}_1 = \overline{\langle Bh_2, h_1 \rangle} = \langle h_1, Bh_2 \rangle$$

Note that, since B is everywhere-defined, symmetry is the same as self-adjointness.

For injectivity, take $h_1, h_2 \in V$, and suppose $Bh_1 = Bh_2$. Then, for all $v \in V^1$,

$$\langle v, h_1 \rangle = \langle v, Bh_1 \rangle_1 = \langle v, Bh_2 \rangle_1 = \langle v, h_2 \rangle$$

Since V^1 is dense in V, this implies that $h_1 = h_2$.

Next we show that the image of B is dense in V with respect to the \langle , \rangle -topology. It suffices to show (?) that the kernal is trivial. Suppose $h \in \ker(B)$. Then, for all $v \in V^1$,

$$\langle v,h\rangle = \langle v,Bh\rangle_1 = \langle v,0\rangle_1 = 0$$

Since V^1 is dense in V, this implies that h = 0. Since $\ker(B|_{V^1}) \subset \ker(B)$, this also implies that the image of B is dense in V^1 , with respect to the \langle , \rangle_1 -toplogy, right? ... completing the proof of the claim.

Note. It is *not* true that, for a linear map $\Phi: V \to V$ on a Hilbert space V, the image is dense if and only if the kernel is trivial!

Let $A : img(B) \to V$ be the inverse of B, which exists on a subspace of V. Then A is an unbounded linear operator, whose domain is dense in V^1 with respect to the \langle , \rangle_1 -topology and dense in V with respect to the \langle , \rangle_1 -topology. And, for $u \in Dom(A), v \in V^1$,

$$\langle Au, v \rangle = \langle u, v \rangle_1$$
 and $\langle v, Au \rangle = \langle v, u \rangle_1$

Claim. The densely defined operator $A : Dom(A) \to V$ is positive, symmetric, and in fact *self-adjoint*.

Proof. Positivity and symmetry follow from the positivity and symmetry of B. Let $v, v' \in \text{Dom}(A)$. Then v = Bh and v' = Bh' for some $h, h' \in V$, and

$$\langle Av, v \rangle = \langle h, Bh \rangle = \langle Bh, h \rangle \ge 0$$

 $\langle Av, v' \rangle = \langle h, Bh' \rangle = \langle Bh, h' \rangle = \langle v, Av' \rangle$

However, since A is not everywhere-defined, symmetry does not imply self-adjointness. To prove that A is self-adjoint, we will show that its graph is equal to the graph of its transpose. Since the adjoint operator is characterized by its graph, this will be sufficient to prove that A is self-adjoint.

Since A is densely defined, it has a well defined adjoint, characterized by its graph:

$$\operatorname{Graph}(A^*) = (U(\operatorname{Graph}A))^{\perp}$$

where $U: V \oplus V \to V \oplus V$ be given by $v \oplus w \mapsto -w \oplus v$.

The self-adjointness of B implies that $\operatorname{Graph}(B) = \operatorname{Graph}(B^*) = (U(\operatorname{Graph} B))^{\perp}$.

To relate the graph of A^* to the graph of B, we define $S: V \oplus V \to V \oplus V$ by $v \oplus w \mapsto w \oplus v$. Then clearly S interchanges the graphs of A and B. Further, $U \circ S = -S \circ U$, since $-v \oplus w = -(v \oplus -w)$, and, for any subspace X of $V \oplus V$, and $(S(X))^{\perp} = S(X^{\perp})$ since $v \oplus w \in (S(X))^{\perp}$ means

$$\langle v \oplus y, w \oplus x \rangle = 0$$
 for all $x \oplus y \in X$

and $v \oplus w \in S(X^{\perp})$ means

$$\langle w \oplus x, v \oplus y \rangle = 0$$
 for all $x \oplus y \in X$

which is clearly equivalent. Thus

$$\begin{aligned} \operatorname{Graph}(A^*) &= \left(U(\operatorname{Graph} A) \right)^{\perp} &= \left(U \circ S(\operatorname{Graph} B) \right)^{\perp} &= \left(-S \circ U(\operatorname{Graph} B) \right)^{\perp} &= -S \left(U(\operatorname{Graph} B)^{\perp} \right) \\ &= -S \left(\operatorname{Graph}(B^*) \right) &= -S(\operatorname{Graph} B) &= -S(\operatorname{Graph} B) &= -\operatorname{Graph} A &= \operatorname{Graph} A \end{aligned}$$

This completes the proof of the claim.

It only remains to show A is an extension of T. We know that Dom(A) and Dom(T) are both subspaces of V^1 , but we want to show that $Dom(A) \supset Dom(T)$ and that A agrees with T on Dom(T).

Recall that the domain of A is the image of B, which consists of all $w \in V^1$ such that there is an $h \in V$ satisfying $\langle v, w \rangle_1 = \langle v, h \rangle$, for all $v \in V^1$. Clearly, for $w \in \text{Dom}(T)$, taking h = Tw will work, since, by the definition of $\langle , \rangle_1, \langle v, w \rangle_1 = \langle v, Tw \rangle$ for all $v \in V^1$.

Now, since $w \in \text{Dom}(A)$, it is also true that $\langle v, w \rangle_1 = \langle v, Aw \rangle$ for all $v \in V^1$. Thus $\langle v, Tw \rangle = \langle v, Aw \rangle$ for all $v \in V^1$, and, by the density of V^1 , Aw = Tw. Thus A is an extension of T.

Note. The Friedrichs extension is the *unique* self-adjoint extension whose domain is contained in V^1 .

Corollary. Every positive, symmetric, densely defined operator S has a Friedrichs extension \tilde{S} , the unique self-adjoint extension of S, whose domain is contained in the subspace V^1 , the Hilbert space completion of Dom(S) with respect to the norm induced by the inner product

$$\langle v, w \rangle_1 = \langle (S+1)v, w \rangle = \langle Sv, w \rangle + \langle v, w \rangle$$

Proof. Suppose S is a positive, symmetric, densely defined operator. Let T = S + 1. Then Friedrichs' construction, given in the proof above, gives a self-adjoint extension \tilde{T} of T. Thus $\tilde{S} = \tilde{T} - 1$ is a self-adjoint extension of S.

5 Gelfand triples and another construction of the Friedrichs extension

As above, let T be a symmetric, densely defined operator on a Hilbert space V with inner product \langle , \rangle . Suppose T is lower semi-bounded with lower bound c = 1, i.e.

$$\langle Tv, v \rangle \ge \langle v, v \rangle$$
 for all $v \in \text{Dom}(T)$

and let V^1 be the Hilbert space completion of Dom(T) with respect to the topology induced by \langle , \rangle_1 , defined on Dom(T) by:

$$\langle v, w \rangle_1 = \langle Tv, w \rangle = \langle v, Tw \rangle$$
 for all $v, w \in \text{Dom}(T)$

With $j: V^1 \hookrightarrow V$ the inclusion, $j^*: V^* \to (V^1)^*$ the adjoint to this inclusion, namely $j^*: \lambda \mapsto \lambda|_{V^1}$, and $\Lambda: V \to V^*$ the Riesz-Fisher isomorphism $\Lambda: v \mapsto (u \mapsto \langle v, u \rangle)$, we have

$$V^1 \stackrel{j}{\hookrightarrow} V \stackrel{\Lambda}{\longrightarrow} V^* \stackrel{j^*}{\longrightarrow} (V^1)^*$$

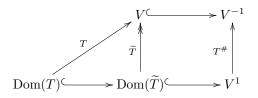
Note that j^* is injective, since $\lambda, \mu \in V^*$ with $j^*(\lambda) = j^*(\mu)$ means that λ and μ are continuous linear functionals on V that agree on the dense subspace V^1 of V, implying that $\lambda = \mu$ on V, i.e. $\lambda = \mu$ as elements of V^* . Thus, denoting $(V^1)^*$ by V^{-1} , identifying V with V^* under the isomorphism Λ on one hand and identifying V^* with its preimage under j^* on the other hand, we consider these spaces as nested: $V^1 \subset V \subset V^{-1}$ and call them a *Gelfand triple*.

Note. The inclusion of V^1 to V^{-1} is via the composite map $j^* \circ \Lambda \circ j$ rather than the canonical inclusion of a Hilbert space to its dual. In particular, this means that we consider an element $w \in V^1$ as an element of V^{-1} via $u \mapsto \langle u, w \rangle$ rather than $u \mapsto \langle u, w \rangle_1$.

The Friedrichs extension of T will be a restriction of the map $T^{\#}: V^1 \to V^{-1}$ given by

$$(T^{\#}v)(w) = \langle v, w \rangle_1 \quad \text{for } v, w \in V^1$$

We claim that $T^{\#}$ agrees with T on Dom(T) and restricting $T^{\#}$ to the preimage of V under $T^{\#}$ gives the Fredrichs extension of T, as is expressed in the commutativity of the following diagram:



To see that $T^{\#}$ agrees with T on Dom(T), take $v \in \text{Dom}(T)$, and note that we consider Tv as an element of V^{-1} by identifying Tv with the map $u \mapsto \langle u, Tv \rangle$, where u lies in V^1 . Then

$$(Tv)(u) = \langle u, Tv \rangle = \langle u, v \rangle_1 = (T^{\#}v)(u)$$
 for all $u \in V^1$

Recall from above that the domain of the Friedrichs extension of T is

$$\operatorname{Dom}(T) = \{ w \in V^1 : \text{ there is } v \in V \text{ such that } \langle u, w \rangle_1 = \langle u, v \rangle \text{ for all } u \in V^1 \}$$

This is precisely the preimage of V under $T^{\#}$, since the condition that $T^{\#}w \in V$ means there exists $v \in V$ such that $T^{\#}w = v$ in V^{-1} , i.e. such that the maps $u \mapsto \langle u, w \rangle_1$ and $u \mapsto \langle u, v \rangle$ agree on V^1 . Certainly \widetilde{T} agrees with $T^{\#}$ on $\text{Dom}(\widetilde{T})$, since, for all $v \in \text{Dom}(\widetilde{T})$,

$$(\widetilde{T}v)(u) = \langle u, \widetilde{T}v \rangle = \langle u, v \rangle_1 = (T^{\#}v)(u)$$
 for all $u \in V^1$

considering $\widetilde{T}v$ as an element of V^{-1} by identifying it with the map $u \mapsto \langle u, \widetilde{T}v \rangle$.

6 Criteria for the existence of self-adjoint extensions

Lemma. Suppose T is a *closed*, symmetric, densely defined unbounded operator. Let $\lambda \in \mathbb{C} - \mathbb{R}$. Then the image $(T - \lambda)\text{Dom}(T)$ is closed.

Proof. (Outline) Consider a Cauchy sequence $(T - \lambda)v_i$ in the image. To show that this sequence converges we will use an auxiliary operator U, which is defined as follows. Since T is symmetric, $\lambda \in \mathbb{C} - \mathbb{R}$ is not an eigenvalue for T and $(T - \lambda)$ is injective on Dom(T). Thus we may define an operator $U = (T - \overline{\lambda})(T - \lambda)^{-1}$ on the image $(T - \lambda)\text{Dom}(T)$. This operator is unitary in the sense that $\langle Uv, Uw \rangle = \langle v, w \rangle$ for all $v, w \in (T - \lambda)\text{Dom}(T)$. (See the proof of Claim 2.0.1 in [2].) The unitarity of Uis used to show that $U(T - \lambda)v_i = (T - \overline{\lambda})v_i$ is Cauchy. See the first part of the proof of Theorem 2.0.2 in [2] for the rest of the proof.

Lemma (Claim 2.0.6 in [2]). Suppose T is a symmetric, densely defined unbounded operator. Let $\lambda \in \mathbb{C} - \mathbb{R}$. Then the image $(T - \lambda) \text{Dom}(T)$ is dense if and only if $\overline{\lambda}$ is not an eigenvalue for T^* .

Proof. First we suppose the image $(T - \lambda)\text{Dom}(T)$ is dense and show that $\bar{\lambda}$ is not an eigenvalue for T^* . Suppose v satisfies $(T^* - \bar{\lambda})v = 0$. Then, for all $w \in \text{Dom}(T)$,

$$0 = \langle (T^* - \bar{\lambda})v, w \rangle = \langle v, (T - \lambda)w \rangle$$

Since $(T - \lambda)$ Dom(T) is dense, this implies that v = 0, i.e. $\overline{\lambda}$ is not an eigenvalue for T^* .

Next we suppose that the image $(T - \lambda)\text{Dom}(T)$ is not dense and show that $\overline{\lambda}$ is an eigenvalue for T^* . In this case, there is a nonzero vector v that is in the orthogonal complement to the image $(T - \lambda)\text{Dom}(T)$. Thus, for all $w \in \text{Dom}(T)$

$$0 = \langle v, (T-\lambda)w \rangle = \langle v, Tw \rangle - \langle v, \lambda w \rangle = \langle v, Tw \rangle - \langle \bar{\lambda}v, w \rangle$$

i.e. $\langle v, Tw \rangle = \langle \overline{\lambda}v, w \rangle$ for all $w \in \text{Dom}(T)$. By the definition of the adjoint as the maximal subadjoint, this means that $v \in \text{Dom}(T^*)$ and $T^*v = \overline{\lambda}v$. Since $v \neq 0$, this proves that $\overline{\lambda}$ is an eigenvalue for T^* .

Theorem (von Neumann). Suppose T is a closed, symmetric, densely defined unbounded operator. Let $\lambda \in \mathbb{C} - \mathbb{R}$ such that the images $(T - \lambda) \text{Dom}(T)$ and $(T - \overline{\lambda}) \text{Dom}(T)$ are dense. Then T is self-adjoint.

Proof. It suffices to show that $Dom(T^*) \subset Dom(D)$. Take any $v \in Dom(T^*)$, and consider $(T^* - \lambda)v$.

By the first lemma, the images $(T - \lambda)\text{Dom}(T)$ and $(T - \overline{\lambda})\text{Dom}(T)$ are closed. Since they are also dense, both are equal to the whole space. In particular, there is a vector $v' \in \text{Dom}(T)$ such that $(T - \lambda)v' = (T^* - \lambda)v$. We will show that, in fact, v' = v, proving that $v \in \text{Dom}(T^*)$.

For all $w \in \text{Dom}(T) \subset \text{Dom}(T^*)$,

$$\begin{array}{lll} \langle v', (T-\bar{\lambda})w \rangle &=& \langle v', (T^*-\bar{\lambda})w \rangle & \text{since } T^* \text{ is an extension of } T \\ &=& \langle (T-\lambda)v', w \rangle & \text{since } v' \in \operatorname{Dom}(T^*) \text{ and } w \in \operatorname{Dom}(T) \\ &=& \langle (T^*-\lambda)v, w \rangle & \text{ by the definition of } v' \\ &=& \langle v, (T-\bar{\lambda})w \rangle & \text{since } v \in \operatorname{Dom}(T^*) \text{ and } w \in \operatorname{Dom}(T) \end{array}$$

Since $(T - \overline{\lambda})$ Dom(T) is dense, this implies that v' = v.

Corollary. Let T be a closed, symmetric, densely defined operator and $\lambda \in \mathbb{C} - \mathbb{R}$. If ker $(T^* - \lambda)$ and ker $(T^* - \overline{\lambda})$ are both trivial, then T is self-adjoint.

Proof. Since ker $(T^* - \lambda)$ and ker $(T^* - \overline{\lambda})$ are both trivial, neither λ nor $\overline{\lambda}$ is an eigenvalue for T^* , so by the second lemma, the images $(T - \lambda)\text{Dom}(T)$ and $(T - \overline{\lambda})\text{Dom}(T)$ are both dense, and, by the theorem, T is self-adjoint.

Corollary (Criteria for essential self-adjointness). Suppose T is a symmetric, densely defined unbounded operator. Let $\lambda \in \mathbb{C} - \mathbb{R}$ satisfy either one of the following conditions:

- 1. The images $(T \lambda) \text{Dom}(B)$ and $(T \overline{\lambda}) \text{Dom}(B)$ are dense.
- 2. Neither λ nor $\overline{\lambda}$ are eigenvalues for the adjoint T^* .

Then T is essentially self-adjoint, and the closure \overline{T} of T is the unique self-adjoint extension of T.

Proof. We have shown above that the two conditions are equivalent, so it suffices to show that the first condition is a criterion for essential self-adjointness. Since T is symmetric, $T \subset \overline{T} = T^{**} \subset T^*$. Thus, for all $v, w \in \text{Dom}(\overline{T})$,

$$\langle Tv, w \rangle = \langle (T^*)^*v, w \rangle = \langle v, T^*w \rangle = \langle v, Tw \rangle$$

i.e. \overline{T} is symmetric. Further, for any $\lambda \in \mathbb{C} - \mathbb{R}$, $(\overline{T} - \lambda)\text{Dom}(\overline{T}) \supset (T - \lambda)\text{Dom}(T)$, so is dense. By the theorem \overline{T} is self-adjoint.

7 Von Neumann's family of self-adjoint extensions

Let B be a densely defined symmetric operator on a Hilbert space V, and let B^* be its adjoint. For any $\eta \in \mathbb{C} - \mathbb{R}$, we define the *deficiency spaces* of B at η and $\bar{\eta}$ by

$$V_{\eta}(B) = \ker(B^* - \eta) \quad V_{\bar{\eta}}(B) = \ker(B^* - \bar{\eta})$$

(Nontrivial deficiency spaces are the analogues of eigenspaces of operators on finite dimensional spaces.)

An alternate characterization of deficiency spaces will be useful.

Lemma. For $\eta \in \mathbb{C} - \mathbb{R}$, the deficiency space of a symmetric, densely defined, graph closed operator B at η can be characterized as the orthogonal complement of the image of Dom(B) under $(B - \overline{\eta})$, i.e.

$$V_{\eta} \stackrel{\text{def}}{=} \ker(B^* - \eta) = \left((B - \bar{\eta}) \operatorname{Dom}(B) \right)^{\perp}$$

Proof. Suppose $w \in V_{\eta} = \ker(B^* - \eta) \subset \operatorname{Dom}(B^*)$. Then, for all $v \in \operatorname{Dom}(B)$,

$$0 = \langle v, 0 \rangle = \langle v, (B^* - \eta)w \rangle = \langle (B - \bar{\eta})v, w \rangle$$

i.e. $w \in (B - \bar{\eta}) \operatorname{Dom}(B))^{\perp}$.

On the other hand, suppose $w \in (B - \bar{\eta}) \text{Dom}(B))^{\perp}$. In order to use the adjointness relation again, we first show that $w \in \text{Dom}(B^*)$, as follows. For all $v \in \text{Dom}(B)$,

$$0 = \langle (B - \bar{\eta})v, w \rangle = \langle Bv, w \rangle - \langle \bar{\eta}v, w \rangle = \langle Bv, w \rangle - \langle v, \eta w \rangle$$

i.e. $\langle Bv, w \rangle = \langle v, \eta w \rangle$ for all $v \in \text{Dom}(B)$. This implies that $w \in \text{Dom}(B^*)$, since the domain of B^* consists precisely of vectors w to which we may associate some w' such that $\langle Bv, w \rangle = \langle v, w' \rangle$ for all $v \in \text{Dom}(B)$. Thus, by the adjointness relation,

$$0 = \langle (B - \bar{\eta})v, w \rangle = \langle v, (B^* - \eta)w \rangle \quad \text{for all } v \in \text{Dom}(B)$$

Since B is densely defined, this implies that $(B^* - \eta)w = 0$, i.e. $w \in \ker(B^* - \eta)$.

Lemma. As a function of η , dim $V_{\eta}(B)$ is a constant on the upper (lower) half plane.

The deficiency indices of B (at η) are the dimensions of its deficiency spaces V_{η} and $V_{\bar{\eta}}$. By Lemma A.1, we may refer simply to the deficiency indices of B, as a well-defined pair, without reference to a specific η .

Theorem. Suppose B is a *closed*, symmetric, densely defined unbounded operator. Then B has deficiency indices both equal to zero if and only if B is self-adjoint.

Proof. If B has deficiency indices both equal to zero, then, for any $\eta \in \mathbb{C} - \mathbb{R}$, $\ker(B^* - \eta)$ and $\ker(B^* - \bar{\eta})$ are both trivial, so B is self-adjoint by the results in the previous section.

If, on the other hand, B is self-adjoint, then B^* is symmetric, so its eigenvalues are *real*, and, for any $\eta \in \mathbb{C} - \mathbb{R}$, the deficiency spaces ker $(B^* - \eta)$ and ker $(B^* - \bar{\eta})$ are trivial.

Lemma. Suppose *B* is a closed, positive, symmetric operator with nonzero deficiency indices that are equal. Fix $\eta \in \mathbb{C} - \mathbb{R}$. Then for each unitary map $U: V_{\eta}(B) \to V_{\overline{\eta}}(B)$, there is a self-adjoint extension $B_U: D_U \to V$, where

$$D_U = \{ f = g + h + Uh : g \in \text{Dom}(B), h \in V_n(B) \}$$

and the action of B_U is the restriction of B^* , namely,

$$B_U f = Bg + \eta h + \bar{\eta} U h$$

Conversely, every self-adjoint extension of B is of this form.

Proof. That B_U is an extension of B is clear, since $D_U \supset \text{Dom}(B)$ and $B_U f = Bf$ for $f \in \text{Dom}(B)$. Next we show that B_U is symmetric, i.e. $\langle B_U f_1, f_2 \rangle = \langle f_1, B_U f_2 \rangle$ for any $f_1, f_2 \in D_U$. Since $f_1 = g_1 + h_1 + Uh_1$ for some $g \in \text{Dom}(B)$ and $h_1 \in V_\eta$,

$$\langle B_U f_1, f_2 \rangle = \langle Bg_1 + \eta h_1 + \bar{\eta} U h_1, f_2 \rangle = \langle Bg_1, f_2 \rangle + \langle \eta h_1, f_2 \rangle + \langle \bar{\eta} U h_1, f_2 \rangle$$

and since $f_2 = g_2 + h_2 + Uh_2$ for some $g_2 \in \text{Dom}(B)$ and $h_1 \in V_\eta$,

$$\begin{aligned} \langle B_U f_1, f_2 \rangle &= \langle Bg_1, g_2 \rangle + \langle Bg_1, h_2 \rangle + \langle Bg_1, Uh_2 \rangle \\ &+ \langle \eta h_1, g_2 \rangle + \langle \eta h_1, h_2 \rangle + \langle \eta h_1, Uh_2 \rangle \\ &+ \langle \bar{\eta} Uh_1, g_2 \rangle + \langle \bar{\eta} Uh_1, h_2 \rangle + \langle \bar{\eta} Uh_1, Uh_2 \rangle \end{aligned}$$

Since B is symmetric and g_1 and g_2 are in the domain of B, $\langle Bg_1, g_2 \rangle = \langle g_1, Bg_2 \rangle$.

By definition, the deficiency space $V_{\eta} = \ker(B^* - \eta) \subset \operatorname{Dom}(B^*)$. Since $h_2 \in V_{\eta}$,

$$\langle Bg_1, h_2 \rangle = \langle g_1, B^*h_2 \rangle = \langle g_1, \eta h_2 \rangle$$

Similarly, since $Uh_2 \in V_{\bar{\eta}} \subset \text{Dom}(B^*)$, $\langle Bg_1, Uh_2 \rangle = \langle g_1, \bar{\eta} Uh_2 \rangle$. By the reverse argument, $\langle \eta h_1, g_2 \rangle = \langle h_1, Bg_2 \rangle$ and $\langle \bar{\eta} Uh_1, g_2 \rangle = \langle Uh_1, Bg_2 \rangle$. Thus,

Using the Hermitian property of \langle , \rangle and the unitarity of U and then regrouping terms,

$$\begin{aligned} \langle B_U f_1, f_2 \rangle &= \langle g_1, Bg_2 \rangle + \langle g_1, \eta h_2 \rangle + \langle g_1, \bar{\eta} U h_2 \rangle \\ &+ \langle h_1, Bg_2 \rangle + \langle U h_1, \bar{\eta} U h_2 \rangle + \langle h_1, \bar{\eta} U h_2 \rangle \\ &+ \langle U h_1, Bg_2 \rangle + \langle U h_1, \eta h_2 \rangle + \langle h_1, \eta h_2 \rangle \end{aligned}$$

$$= \langle g_1, Bg_2 \rangle + \langle g_1, \eta h_2 \rangle + \langle g_1, \bar{\eta} U h_2 \rangle + \langle h_1, Bg_2 \rangle + \langle h_1, \eta h_2 \rangle + \langle h_1, \bar{\eta} U h_2 \rangle + \langle U h_1, Bg_2 \rangle + \langle U h_1, \eta h_2 \rangle + \langle U h_1, \bar{\eta} U h_2 \rangle$$

$$= \langle f_1, B_U f_2 \rangle$$

To complete the proof that B_U is self-adjoint we prove that its deficiency indices are both zero. The deficiency space at η is

$$\ker(B_U^* - \eta) = \left((B_U - \bar{\eta}) \operatorname{Dom}(B_U) \right)^{\perp}$$

Note that $(B_U - \bar{\eta}) \text{Dom}(B_U)$ consists of functions of the form $(B_U - \bar{\eta})(g + h + Uh)$ where $g \in \text{Dom}(B)$ and $h \in V_\eta = \ker(B^* - \eta) = ((B - \bar{\eta})\text{Dom}(B))^{\perp}$, and in this case

$$(B_U - \bar{\eta})(g + h + Uh) = (B - \bar{\eta})g + (\eta - \bar{\eta})h + (\bar{\eta} - \bar{\eta})Uh = (B - \bar{\eta})g + (\eta - \bar{\eta})h$$

Here $(B - \bar{\eta})g$ ranges over $(B - \bar{\eta})\text{Dom}(B)$ and, since $\eta \notin \mathbb{R}$, $(\eta - \bar{\eta}) \neq 0$, so $(\eta - \bar{\eta})h$ ranges over the orthogonal complement, the deficiency space of B at η , $V_{\eta} = ((B - \bar{\eta})\text{Dom}(B))^{\perp}$. Thus $(B_U - \bar{\eta})\text{Dom}(B_U)$ is dense in V, its orthogonal complement, the deficiency space of B_U at η , is zero, and the deficiency index of B_U at η is zero. The same argument shows that the deficiency space of B_U at $\bar{\eta}$ is zero.

(Proof of converse omitted.)

Note. In particular, the Friedrichs extension can be described as a member of this family of extensions.

8 Spectrum and resolvents of unbounded operators

Another important result (for proof see [1]) regards the existence of *resolvents*: for any *densely defined*, self-adjoint operator T and for every $\lambda \in \mathbb{C} - \mathbb{R}$, the operator $R_{\lambda} = (T - \lambda)^{-1}$ is an everywhere defined linear operator. Further, if T is also positive, R_{λ} is everywhere defined whenever $\lambda \in [0, \infty)$.

References

- Paul Garrett. Unbounded operators, Friedrichs' extension theorem. March 7, 2011. http://www.math.umn.edu/~garrett/m/v/friedrichs.pdf.
- [2] Paul Garrett. Essential self-adjointness. February 23, 2013. http://www.math.umn.edu/~garrett/m/fun/adjointness_crit.pdf.
- [3] Michael Reed and Barry Simon. Methods of Modern Mathematical Physics, Vol. 2: Fourier Analysis and Self-Adjointness. Academic Press, London, 1975.
- [4] Zeev Rudnick and Henrik Ueberschär, Statistics of wave functions for a point scatterer on the torus. arXiv:1109.4582v4 [math-ph], 22 Apr 2012.