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These expository notes were written in an effort to understand some results in an appendix of a paper of
Rudnick and Ueberschér [4] on eigenvalues of the point scatterer on the torus. For the most part, we follow
the exposition in Garrett’s vignettes [Il [2]. See also Reed-Simon [3].

Let V be a Hilbert space and D a subspace. A linear map T : D — V called an unbounded operator on V.
This terminology is misleading since 7" is not necessarily defined on all of V' and 7" may or may not be
bounded. We denote the domain, D, of T' as Dom(T"). Specifying the domain is an essential part of
defining an unbounded operator. Often, but not always, the domain D is chosen to be dense in V. Usually,
T is not continuous when D is given the subspace topology from V.

An unbounded operator on V' is closed (or graph-closed) if its graph is closed in V' @& V. An unbounded
operator T is closable if there is an operator, the closure T of T, whose graph is the closure of the graph of
T.

For everywhere-defined linear operators the notion of closedness coincides with that of continuity: a
continuous linear operator has a closed graph, and, by the Closed Graph Theorem, an everywhere-defined
linear operator with a closed graph is continuous. In contrast, unbounded operators with closed graphs are
not necessarily continous.

An unbounded operator T3 is an extension of an unbounded operator 77 if it has a larger domain and it
agrees with 77 on the domain of 77, i.e.

Dom(7%) D Dom(T7) and Tolpom(r) = Ti

The expression T D T; denotes that T is an extension of T7.

1 Adjoints of unbounded operators
An unbounded operator T”, D’ is a subadjoint to T, D, when

(Tv,w) = (v, T'w) forallve D, we D’

The unique maximal element among all subadjoints is the adjoint T™* of T'; the uniqueness and existence of
the adjoint requires proof.

Proposition. Let T, D be an unbounded, densely defined operator on a Hilbert space V.
1. There is a unique maximal T*, D* among all subadjoints to T, D.
2. T* is closed, in the sense that its graph is closed in V @& V.

3. T is characterized by its graph:
Graph(T*) = (U(Graph(T)))™

where U is the Hilbert space isomorphism V@V — V @V given by U(v ® w) = —w D v.



Proof. Note that V @ V is a Hilbert space with inner product (v ® w,v' & w)yvgy = (v, )y + (w,w)y.
When the Hilbert space is clear from context, we drop the subscripts from (, ).

We observe that the adjointness condition can be rewritten as an orthogonality condition, in the following
way. For a given w € V, the condition that

(Tv,w) = (v, T'w) for all v € D

is equivalent to
0 = —(Tv,w) + (v,T'w) for all v € D

Rewriting the right side,
—(Tv,w) + (v, T'w) = (-Tv,w) + (v,T'w) = ((-Tv) Bv,wdT'w) = (U(v&Tv),wd T w)
This shows that, for a given w € V/,

(Tv,w) = (v, T'"w) forallve D = wdT'w € (U(Graph(T)))L

Thus an operator 77, D' is subadjoint to T, D if and only if its graph lies in (U(Graph(T)))L. Constructing

an operator whose graph equals (U (Graph(T)))L proves the existence and uniqueness of the adjoint, as
follows.

To a given w € V, we wish to associate w’ € V such that w @ w’ € (U(Graph(T)))l, i.e. such that

(Tv,w) = (v,w') for all v € D. This may not always be possible; but the vectors w for which is is possible
constitute the domain of the operator we construct. Since T is densely defined, we can be sure that there is
at most one such w’, for

(Tv,w) = (v,w]) = (v,wy) forallve D (denseinV) =  wj=uw)

Thus we have a well-defined map w +— w’ on a subset of V. This map is certainly linear, for, if w; — w/
and wy — wh and «, 8 € C, then, on one hand,

a(Tv,wi) + B(Tv,we) = (T, awy + fws)
and, on the other hand,
Oé<TU,UJ1> + ,8<T’U,’LU2> = Oé<’U,U]/1> + B<’U7w/2> = <’U,O[U)/1 +Bwl2>

so awi + fwy — aw] + fw). By construction, its domain is the unique maximal domain among the

domains of subadjoints. Since its graph is precisely (U (Graph(T)))J'7 and since orthogonal complements
are closed, the constructed operator is a (graph-)closed operator. O]

Question. From this proof it seems that the domain of the adjoint 7™ of T' consists precisely of those
vectors w € V for which there exists w’ € V such that (Tv, w) = (v,w’) for all v € Dom(T"). Is this correct?

2 Symmetric and self-adjoint unbounded operators

An unbounded operator is symmetric when T' C T*, i.e. when (i) the domain of its adjoint is at least as
large as the domain of T" and (ii) T and its adjoint agree on the domain of T. Note that this implies

(Tv,w) = (v,Tw) for all v,w € Dom(T") C Dom(T™)

An unbounded operator is self-adjoint when T'=T*, i.e. when (i) the domain of its adjoint, which is
maximal among domains of subadjoints, is precisely the domain of T and (ii) T and its adjoint agree on the
domain of T'. Note that this implies

(Tv,w) = (v,Tw) for all v,w € Dom(T") = Dom(T™)



For bounded operators, these two notions are the same. For symmetric unbounded operators, we wish to
construct self-adjoint extensions. The Friedrichs extension is one such, as are the members of the family of
extensions, parametrized by a unitary group and described in [?], which we discuss below.

We will need the following property of symmetric operators below.
Proposition. The eigenvalues of a symmetric operator are real.

Proof. Let S be a densely defined symmetric operator. Suppose Sv = v for some 0 # v € Dom(S). Then,
on one hand,
(Sv,v) = (A,v) = A(v,v)

and, on the other hand, ~
(Sv,v) = (v,5v) = (v, v) = A{v,v)

Since v # 0, A = \, i.e. X is real. O

3 Symmetric extensions of symmetric operators

Note that the adjoint T* of a densely defined symmetric operator T is a closed extension of T. However,
T* need not be symmetric. For T* to be symmetric (T* C T**) it would have to be self-adjoint
(T* = T*), since, in general, T** C T™* when T is symmetric, as shown in the following proposition.

Proposition. Let T" be a densely defined symmetric operator. Then 7' is closable with T = T**. Further,
the closure T is symmetric, T C T CT*, and T =T".

Proof. Recalling that the graph of an adjoint S* of a linear operator is
Graph(S*) = (U(Graph S))L

where U : V®V - V®V is given by v ® w — —w ® v, and using the fact that, for any subspace X of
VeV, (U(X))l = U~ (X*), we can see that the graph of T** is the closure of the graph of T

Graph(T™") = (U(GmphT*))L = (U((U(GrraphT))L))L = (GraphT)**+ = (GraphT)
Thus T** =T, and T is closable.

Since the closure of an operator can be characterized as the minimal closed extension and since 7™ is a
closed extension of T', we have T'C T C T™*.

We can see that T is symmetric, since, for all v,w € Dom(7T) C Dom(T*),

(Tv,w) = (T**v,w) = (v, T*w) = (v,Tw)

To see that the adjoint T of the closure is the same as the adjoint of T, we look at the graph of
T* = T***. By the argument above, the graph of (T*)** is the closure of the graph of T*. Since the graph
of T* is closed, this means that the graph of T*** is the graph of T*. To summarize:

Graph(T") = (Graph(T*)) = Graph(T*)
Thus the adjoint of T is simply T*. O

Note. In fact, any symmetric extension S of T is a restriction of the adjoint T*, as follows. First,
Dom(S) € Dom(7T™), since S is subadjoint to 7. And, for all v € Dom(T'), w € Dom(S),

(v, Sw) = (Sv,w) = (Tv,w) = (v, T*w)

The density of Dom(T') implies that T*w = Sw, proving that T* agrees with S on the domain of S.



Note. Although T** is a closed, symmetric extension of T, it is typically not self-adjoint. If it is
self-adjoint, it is the unique self-adjoint extension of T', as follows. Suppose S is a self-adjoint extension of
T. Then S is closed, and thus an extension of T'. It is also a restriction of T, since it is symmetric. Since
taking adjoints is inclusion-reversing,

TcTcS=8cT cT*

Self-adjointness of T means T = T*, forcing T = S.

A symmetric, densely defined operator is essentially self-adjoint if it has a unique self-adjoint extension.
Before discussing criteria for essential self-adjointness and for the existence of self-adjoint extensions in
general, we discuss one construction of self-adjoint extensions, due to Friedrichs.

4 Friedrichs’ self-adjoint extension

The Friedrichs extension of a positive, symmetric, densely defined operator is a self-adjoint extension,
which can be understood as an extension “by closure” in a certain sense. In fact, this construction works
for a broader class of symmetric, densely defined operators, those that are semi-bounded.

A symmetric operator T is lower semi-bounded if there is a real constant ¢ such that
(Tw,v) > c(v,v) for all v € Dom(T)

Positivity is a special case of lower semi-boundedness, with ¢ = 0. A symmetric operator is upper
semi-bounded if there is a real constant C such that

(Tv,v) < C(v,v) for all v € Dom(T)

Note that every semi-bounded operator can be easily obtained from a positive operator by multiplying by
(=1), if necessary, and adding an appropriate constant: if T" is lower semi-bounded with lower bound c,
then T — ¢ is positive; if T" is upper semi-bounded with upper bound C', then C' — T is a positive operator.

Friedrichs’ construction of self-adjoint extensions is most easily described for lower semi-bounded operators
with lower bound ¢ = 1. We will briefly describe the Friedrichs extension, before giving the full
construction in the proof of the theorem below.

Let T be a symmetric, densely defined operator on a Hilbert space V' with inner product (, ). Suppose T is
lower semi-bounded with lower bound ¢ =1, i.e.

(Tv,vy > (v,v) for all v € Dom(T)
We will define a new inner product (, }; on Dom(T") by
(vyw); = (Tv,w) = (v, Tw) for all v,w € Dom(T)

Let V! be the Hilbert space completion of Dom(T') with respect to the topology induced by (, );. Thus
Dom(T) is a dense subspace of V!, with respect to the (, );-topology, in addition to being a dense
subspace of V, with respect to the (, )-topology . The (, );-topology is finer than the (, )-topology, so V!
is a closed subspace of V.

Note. In an extended sense, (, }; makes sense on V' x Dom(7T') and Dom(T') x V: for all h € V|
v € Dom(T'), we can define (v, h); = (Tv, h) and (h,v); = (h,Tv).

The Friedrichs extension T of T will be the unique self-adjoint extension of T' with domain inside V1. In

particular, we will see that an element w € V is in Dom(T') precisely if there is an element h € V' such that
(v,h) = (v,w); for all v € V!; in this case T'(w) = h. Thus we have

(Tv,w) = (v,Tw) = (v,w) for all v,w € Dom(T)



Note. In fact, asymmetric versions are also true: (Tw,w) = (v, w); for all v € Dom(T) and w € V!, and

similarly (v, Tw) = (v,w); for all v € V! and w € Dom(T).

Theorem (Friedrichs). Every semi-bounded, symmetric, densely defined operator has a self-adjoint
extension.

Proof. As discussed above, it suffices to consider a lower semi-bounded, symmetric, densely defined
operator T', with lower bound ¢ = 1. We will define an injective bounded linear operator B, whose inverse,
defined on the image of B, will be the Friedrichs extension of T

As in the discussion above, define (, ); on Dom(T) by (v,w); = (Twv,w) = (v, Tw). We verify that (, );
is an inner product on Dom(T).

Positivity and nondegeneracy follow from the lower bound for T (v,v); = (Tv,v) > (v,v) > 0 for all
v € Dom(T), and
0 = (v,v)1 = (Tv,v) > (v,v) = v=0

Conjugate symmetry follows from the symmetry of 7" and the conjugate symmetry of (, ):

(v,w)yr = Tv,w) = (v, Tw) = Tw,v) = (w,v), for all v, w € Dom(T)
Lastly, sesquilinearity follows from the linearity of T and the sesquilinearity of (, ).

As above, let V! be the Hilbert space completion of Dom(7T) with respect to the topology induced by (, )1.

Claim. The abstract Hilbert space completion V! can be identified with the closure of Dom(T) with
respect to the topology induced by (, )1, we may consider it as a subspace of V.

We will define a map B : V — V! as follows: for any h € V, Bh will be the unique element of V! satisfying
(v,h) = (v,Bh); or, equivalently, (h,v) = (Bh,v); for all v € V!
That such an element exists requires proof.
Claim. The map B :V — V! and is a well-defined, bounded linear operator. Further,
1. B is positive and symmetric (with respect to (, }) and thus self-adjoint,
2. B is injective, and

3. the image of B is dense with respect to both the topology induced by (, ) and the topology induced
by <7 >1~

Proof. We start with well-definedness. For any h € V', consider the linear functional A, : v +— (v, h)
restricted to V. We show that )j, is bounded on V!, and thus a continous linear functional on V1, as
follows.

[An(v)] (v, B)|

[Anllop = sup = sup
R G vevt vl vevt lvlh vevt vl

||k ||k
B 1y L

Thus A\, € (V1)*. Since V! is a Hilbert space, the Riesz Representation Theorem implies that there is a
unique w € V! such that A\, (v) = (v,w);. Let B(h) = w. Then B is a well-defined map V — V1.

Linearity of B follows easily from the sesquilinearity of (, ) and (, );: for hy,hy € V and «, 8 € C,
<U, B(ah1+6h2)>1 = <U, Oéhl—‘rﬁhQ) = @<U, h1> + B(’U, h2> = d(’U, Bh1>1 +B<’U, Bh2>1 = <U, aBh + BBh2>1

for all v € V1. Thus B(ahy + Bha) = aB(h1) + BB(h2).



Positivity of B follows from the positivity of (, );: for any h € V, Bh € V!, so

Symmetry of B follows from the conjugate symmetry of (, }; and (, ): for hy, ha € V,

(Bhy,ho) = (Bhy,Bhs)1 = (Bhg, Bhi); = (Bha,h1) = (hi,Bhs)
Note that, since B is everywhere-defined, symmetry is the same as self-adjointness.
For injectivity, take hy, hy € V, and suppose Bhy = Bhy. Then, for all v € V1,
(v,hi1) = (v,Bh1)1 = (v,Bha)1 = (v, ha)
Since V! is dense in V, this implies that hy = hs.

Next we show that the image of B is dense in V' with respect to the (, )-topology. It suffices to show (?)
that the kernal is trivial. Suppose h € ker(B). Then, for all v € V!,

(v,hy = (v,Bh); = (v,0); = 0

Since V! is dense in V/, this implies that h = 0. Since ker(B|y1) C ker(B), this also implies that the image
of B is dense in V1, with respect to the (, );-toplogy, right? ...completing the proof of the claim.

Note. It is not true that, for a linear map ® : V'— V on a Hilbert space V', the image is dense if and only
if the kernel is trivial!

Let A :img(B) — V be the inverse of B, which exists on a subspace of V. Then A is an unbounded linear
operator, whose domain is dense in V! with respect to the (, );-topology and dense in V with respect to
the (, )-topology. And, for u € Dom(A), v € V1,

(Au,v) = (u,v)1 and (v, Auy = (v,u);
Claim. The densely defined operator A : Dom(A) — V is positive, symmetric, and in fact self-adjoint.

Proof. Positivity and symmetry follow from the positivity and symmetry of B. Let v,v" € Dom(A). Then
v = Bh and v/ = Bh for some h,h’ € V, and

(Av,v) = (h, Bh) = (Bh,h) > 0
(Av,v"y = (h,Bh') = (Bh,h’) = (v, Av")

However, since A is not everywhere-defined, symmetry does not imply self-adjointness. To prove that A is
self-adjoint, we will show that its graph is equal to the graph of its transpose. Since the adjoint operator is
characterized by its graph, this will be sufficient to prove that A is self-adjoint.

Since A is densely defined, it has a well defined adjoint, characterized by its graph:
Graph(A*) = (U(GraphA))J'

where U : VOV -V ®V be given by v G w — —w P v.

The self-adjointness of B implies that Graph(B) = Graph(B*) = (U(GraphB))J‘.

To relate the graph of A* to the graph of B, we define S: VoV - VOV by v@w— wdv. Then clearly
S interchanges the graphs of A and B. Further, U oS = —SoU, since —v ® w = —(v & —w), and, for any

subspace X of V @V, and (S(X))L = S(X+) sincevdw e (S(X))L means

wdy,wdz) =0 foralzpy e X



and v ® w € S(X ) means
(wdz,vdy) =0 forallz @y e X

which is clearly equivalent. Thus

Graph(A*) = (U(GraphA))™ = (UoS(GraphB))™ = (—SolU(GraphB))™ = —S(U(GraphB)")
= —S(Graph(B*)) = —S(GraphB) = —S(GraphB) = —GraphA = GraphA

This completes the proof of the claim.

It only remains to show A is an extension of T. We know that Dom(A) and Dom(T") are both subspaces of
V1, but we want to show that Dom(A4) D Dom(T) and that A agrees with 7" on Dom(T).

Recall that the domain of A is the image of B, which consists of all w € V! such that there is an h € V
satisfying (v,w); = (v,h), for all v € V1. Clearly, for w € Dom(T), taking h = Tw will work, since, by the
definition of (, )1, (v,w); = (v,Tw) for all v € V1.

Now, since w € Dom(A), it is also true that (v,w); = (v, Aw) for all v € V!, Thus (v, Tw) = (v, Aw) for
all v € V1, and, by the density of V!, Aw = Tw. Thus A is an extension of T O

Note. The Friedrichs extension is the unique self-adjoint extension whose domain is contained in V''.

Corollary. Every positive, symmetric, densely defined operator S has a Friedrichs extension S , the unique
self-adjoint extension of S, whose domain is contained in the subspace V!, the Hilbert space completion of
Dom(S) with respect to the norm induced by the inner product

(v,w); = ((S+ Dv,w) = (Sv,w) + (v, w)

Proof. Suppose S is a positive, symmetric, densely defined operator. Let T'= S + 1. Then Friedrichs’
construction, given in the proof above, gives a self-adjoint extension 7" of 7. Thus S =T —1is a
self-adjoint extension of S. O

5 Gelfand triples and another construction of the Friedrichs
extension

As above, let T' be a symmetric, densely defined operator on a Hilbert space V' with inner product (, ).
Suppose T is lower semi-bounded with lower bound ¢ = 1, i.e.

(Tw,vy > (v,v) for all v € Dom(T)

and let V! be the Hilbert space completion of Dom(T') with respect to the topology induced by (, )1,
defined on Dom(T') by:

(wy,wy; = (Tw,w) = (v, Tw) for all v, w € Dom(T)

With j : V1 < V the inclusion, j* : V* — (V1)* the adjoint to this inclusion, namely j* : A — |1, and
AV — V* the Riesz-Fisher isomorphism A : v — (u — (v, u)), we have

vioov A e Dy

Note that j* is injective, since A, u € V* with j*(\) = j*() means that A and u are continuous linear
functionals on V that agree on the dense subspace V! of V, implying that A = g on V, i.e. A = pu as
elements of V*. Thus, denoting (V1)* by V!, identifying V with V* under the isomorphism A on one
hand and identifying V* with its preimage under j* on the other hand, we consider these spaces as nested:
V! cV c V7! and call them a Gelfand triple.



Note. The inclusion of V! to V! is via the composite map j* o A o j rather than the canonical inclusion
of a Hilbert space to its dual. In particular, this means that we consider an element w € V! as an element
of V71 via u + (u,w) rather than u — (u,w);.

The Friedrichs extension of T will be a restriction of the map T# : V1 — V1 given by
(T#v)(w) = (v,w); for v,w € V!

We claim that 7% agrees with T on Dom(T) and restricting T# to the preimage of V under T# gives the
Fredrichs extension of T', as is expressed in the commutativity of the following diagram:

Ve— vyt

T .
T T#

Dom (7)) Dom(T)— V1

To see that T# agrees with 7' on Dom(T), take v € Dom(T’), and note that we consider 7w as an element
of V=1 by identifying Tw with the map u > (u,Tv), where u lies in V1. Then

(Tv)(u) = (u, Tv) = (u,v); = (T7v)(u) for all u € V!
Recall from above that the domain of the Friedrichs extension of T is
Dom(T) = {w € V' : there is v € V such that (u, w); = (u,v) for all u € V'}

This is precisely the preimage of V under T#, since the condition that 7#w € V means there exists v eV
such that T#w = v in V1, i.e. such that the maps u + (u,w); and u ~ (u,v) agree on V1. Certainly T

agrees with 7% on Dom(T), since, for all v € Dom(T),
(Tw)(u) = (u, Tv) = (u,v); = (T#v)(u) for all u € V*

considering T as an element of V! by identifying it with the map u — (u, Tw).

6 Criteria for the existence of self-adjoint extensions

Lemma. Suppose T is a closed, symmetric, densely defined unbounded operator. Let A € C —R. Then the
image (T — A\)Dom(T) is closed.

Proof. (Outline) Consider a Cauchy sequence (T — \)v;in the image. To show that this sequence converges
we will use an auxilliary operator U, which is defined as follows. Since T is symmetric, A € C — R is not an
eigenvalue for T' and (T'— \) is injective on Dom(7T'). Thus we may define an operator

U= (T —\(T - )\~ on the image (T — \)Dom(T'). This operator is unitary in the sense that

(Uv,Uw) = (v,w) for all v,w € (T — X\)Dom(T"). (See the proof of Claim 2.0.1 in [2].) The unitarity of U
is used to show that U(T — A\)v;) = (T — A)v; is Cauchy. See the first part of the proof of Theorem 2.0.2 in
[2] for the rest of the proof. O

Lemma (Claim 2.0.6 in [2]). Suppose 7' is a symmetric, densely defined unbounded operator. Let
A € C —R. Then the image (T'— A)Dom(T) is dense if and only if A is not an eigenvalue for T*.

Proof. First we suppose the image (T'— A)Dom(T') is dense and show that X is not an eigenvalue for 7*.

Suppose v satisfies (T* — A)v = 0. Then, for all w € Dom(T),

0 = ((T" = Nv,w) = (v, (T — N\w)

Since (T'— A)Dom(T) is dense, this implies that v = 0, i.e. \ is not an eigenvalue for T*.



Next we suppose that the image (T — A)Dom(T) is not dense and show that \ is an eigenvalue for T*. In
this case, there is a nonzero vector v that is in the orthogonal complement to the image (' — A\)Dom(T).
Thus, for all w € Dom(T)

0 = (v,(T-Nw) = (v,Tw) — (v, \w) = (v,Tw) — (Av,w)

ie. (v,Tw) = (A, w) for all w € Dom(T'). By the definition of the adjoint as the maximal subadjoint, this
means that v € Dom(7T%) and T*v = Av. Since v # 0, this proves that A is an eigenvalue for 7. O

Theorem (von Neumann). Suppose 7' is a closed, symmetric, densely defined unbounded operator. Let
A € C — R such that the images (T'— A\)Dom(7") and (T — A\)Dom(T) are dense. Then T is self-adjoint.

Proof. Tt suffices to show that Dom(T™*) C Dom(D). Take any v € Dom(T™), and consider (T* — A)v.
By the first lemma, the images (T — A)Dom(7T") and (T'— A\)Dom(T') are closed. Since they are also dense,
both are equal to the whole space. In particular, there is a vector v’ € Dom(T') such that

(T — N = (T* — X\)v. We will show that, in fact, v' = v, proving that v € Dom(T™).

For all w € Dom(T') C Dom(T™),

(W (T —Nw) = (@, (T* —Nw) since T* is an extension of T
= ((T—M)v',w) since v € Dom(T*) and w € Dom(T)
= ((T* = Mv,w) by the definition of v’
= (v,(T—MNw)  since v € Dom(T*) and w € Dom(T)
Since (T'— A)Dom(T) is dense, this implies that v’ = v. O

Corollary. Let T be a closed, symmetric, densely defined operator and A € C — R. If ker(7T* — \) and

ker(T™* — \) are both trivial, then T is self-adjoint.

Proof. Since ker(T* — X) and ker(T™* — X) are both trivial, neither X nor A is an eigenvalue for T*, so by the
second lemma, the images (T'— A\)Dom(T") and (T — A\)Dom(T') are both dense, and, by the theorem, T is
self-adjoint. O

Corollary (Criteria for essential self-adjointness). Suppose T is a symmetric, densely defined unbounded
operator. Let A € C — R satisfy either one of the following conditions:

1. The images (T — A)Dom(B) and (T — A\)Dom(B) are dense.
2. Neither A nor \ are eigenvalues for the adjoint 7.
Then T is essentially self-adjoint, and the closure T of T is the unique self-adjoint extension of 7.

Proof. We have shown above that the two conditions are equivalent, so it suffices to show that the first
condition is a criterion for essential self-adjointness. Since T'is symmetric, T' C T'=T** C T™*. Thus, for

all v,w € Dom(T), - _
(Tv,w) = (T*)v,w) = (v,T*w) = (v,Tw)

i.e. T is symmetric. Further, for any A € C — R, (T — A\)Dom(T) D (T' — X\)Dom(T), so is dense. By the
theorem T is self-adjoint. O



7 Von Neumann’s family of self-adjoint extensions

Let B be a densely defined symmetric operator on a Hilbert space V', and let B* be its adjoint. For any
n € C — R, we define the deficiency spaces of B at n and 7 by

Vy(B) = ker(B* —n) Vz(B) = ker(B* —17)
(Nontrivial deficiency spaces are the analogues of eigenspaces of operators on finite dimensional spaces.)

An alternate characterization of deficiency spaces will be useful.

Lemma. For n € C — R, the deficiency space of a symmetric, densely defined, graph closed operator B at
7 can be characterized as the orthogonal complement of the image of Dom(B) under (B — ), i.e.

V, ¥ ker(B*—n) = ((B—m)Dom(B))"

Proof. Suppose w € V;, = ker(B* —n) C Dom(B*). Then, for all v € Dom(B),
0= (v,0) = (v,(B"—nw) = ((B—nv,w)
ie.we (B— 77)Dom(B))L
On the other hand, suppose w € (B — ﬁ)Dom(B))L. In order to use the adjointness relation again, we first
show that w € Dom(B*), as follows. For all v € Dom(B),
0 = ((B-mv,w) = (Bv,w) = (v,w) = (Bv,w) — (v, nw)

ie. (Bv,w) = (v,nw) for all v € Dom(B). This implies that w € Dom(B*), since the domain of B*
consists precisely of vectors w to which we may associate some w’ such that (Bv,w) = (v, w’) for all
v € Dom(B). Thus, by the adjointness relation,

0 = (B-—n)v,w)y = (v,(B*—n)w) for all v € Dom(B)
Since B is densely defined, this implies that (B* —n)w = 0, i.e. w € ker(B* — 7). O

Lemma. As a function of 7, dim V;,(B) is a constant on the upper (lower) half plane.

The deficiency indices of B (at 1) are the dimensions of its deficiency spaces V,, and V. By Lemma A.1, we
may refer simply to the the deficiency indices of B, as a well-defined pair, without reference to a specific 7.

Theorem. Suppose B is a closed, symmetric, densely defined unbounded operator. Then B has deficiency
indices both equal to zero if and only if B is self-adjoint.

Proof. If B has deficiency indices both equal to zero, then, for any n € C — R, ker(B* —n) and ker(B* — 7))
are both trivial, so B is self-adjoint by the results in the previous section.

If, on the other hand, B is self-adjoint, then B* is symmetric, so its eigenvalues are real, and, for any
n € C — R, the deficiency spaces ker(B* — ) and ker(B* — 7) are trivial. O

Lemma. Suppose B is a closed, positive, symmetric operator with nonzero deficiency indices that are
equal. Fix n € C — R. Then for each unitary map U : V,;(B) — V5(B), there is a self-adjoint extension
By : Dy — V, where

Dy = {f =9g+h+Uh: geDom(B), heV,(B)}

and the action of By is the restriction of B*, namely,
BUf = Bg + 77]7, + ’F]Uh

Conversely, every self-adjoint extension of B is of this form.
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Proof. That By is an extension of B is clear, since Dy D Dom(B) and By f = Bf for f € Dom(B).
Next we show that By is symmetric, i.e. (By fi1, f2) = {f1, Buf2) for any f1, fo € Dy.

Since f1 = g1 + h1 + Uh;y for some g € Dom(B) and h; € Vj,

(Bufi, f2) = (Bg1 + nh1 + qUhy, f2) = (Bgi, f2) + (nha, f2) + (QUR4, f2)
and since fa = ga + ho + Uhq for some go € Dom(B) and hy € V,,,
(Bufi, fa) = (Bg1,92) + (Bgi,h2) + (Bg1,Uha)

+(nh1,g2) + (Mhi,h2) + (nh1, Uhg)
+<77Uh1,gg> + <77Uh1,h2> + <ﬁUh1,Uh2>

Since B is symmetric and g; and gs are in the domain of B, (Bgi, g2) = (g1, Bga).
By definition, the deficiency space V;, = ker(B* —n) C Dom(B*). Since hy € Vj,

(Bgi,h2) = (g1,B"h2) = (g1,mh2)

Similarly, since Uhy € Vi C Dom(B*), (Bgi,Uhs) = (g1,7Uh2). By the reverse argument,
(nh1,g2) = (h1, Bg2) and (7Uh, g2) = (Uh1, Bgz). Thus,

(Bufi, fo) = (g91,Bg2) + (g1,nh2) + (91,7 Uhz)
+(h1,Bg2) + (nh1,ha) + (nhi,Uhs)
+<Uh17ng> + <’F]Uh1,h2> + <77Uh1,Uh2>

Using the Hermitian property of (, ) and the unitarity of U and then regrouping terms,
(Bufi, fo) = (g91,Bg2) + (91,nh2) + (91,7 Uhz)

+<h15B92> + <Uh1a77Uh2> + <h15ﬁUh2>
+(Uhy, Bga) + (Uh1,nha) + (h1,nh2)

= (91,Bg2) + (g91,mh2) + (g1,7Uhy)
+(h1, Bga) + (h1,nh) + (h1,7Uhy)
+<Uh17Bg2> + <Uh1a77h/2> + <UhlaﬁUh2>

= <flaBUf2>

To complete the proof that By is self-adjoint we prove that its deficiency indices are both zero. The
deficiency space at 7 is
ker(Bi; —n) = ((Bu — 7)Dom(By)) "
Note that (By — 7)Dom(By) consists of functions of the form (By — 7)(g + h + Uh) where g € Dom(B)
and h € V) = ker(B* —n) = ((B — ﬁ)Dom(B))L, and in this case
(Bu —m(g+h+Uh) = (B=m)g + (n—mh + (n—7Uh = (B=0)g + (n—n)h

Here (B — 7)g ranges over (B — 7j)Dom(B) and, since nn ¢ R, (n —7) # 0, so (n — 7j)h ranges over the

orthogonal complement, the deficiency space of B at n, V;, = ((B — ﬁ)Dom(B))L. Thus (By — 77)Dom(By)
is dense in V/, its orthogonal complement, the deficiency space of By at 7, is zero, and the deficiency index
of By at 7 is zero. The same argument shows that the deficiency space of By at 7 is zero. O

(Proof of converse omitted.)

Note. In particular, the Friedrichs extension can be described as a member of this family of extensions.
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8 Spectrum and resolvents of unbounded operators

Another important result (for proof see [1]) regards the existence of resolvents: for any densely defined,
self-adjoint operator T and for every A € C — R, the operator Ry = (T — \)~! is an everywhere defined
linear operator. Further, if T is also positive, Ry is everywhere defined whenever A € [0, 00).
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