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These expository notes were written in an effort to understand some results in an appendix of a paper of
Rudnick and Ueberschär [4] on eigenvalues of the point scatterer on the torus. For the most part, we follow
the exposition in Garrett’s vignettes [1, 2]. See also Reed-Simon [3].

Let V be a Hilbert space and D a subspace. A linear map T : D → V called an unbounded operator on V .
This terminology is misleading since T is not necessarily defined on all of V and T may or may not be
bounded. We denote the domain, D, of T as Dom(T ). Specifying the domain is an essential part of
defining an unbounded operator. Often, but not always, the domain D is chosen to be dense in V . Usually,
T is not continuous when D is given the subspace topology from V .

An unbounded operator on V is closed (or graph-closed) if its graph is closed in V ⊕ V . An unbounded
operator T is closable if there is an operator, the closure T of T , whose graph is the closure of the graph of
T .

For everywhere-defined linear operators the notion of closedness coincides with that of continuity: a
continuous linear operator has a closed graph, and, by the Closed Graph Theorem, an everywhere-defined
linear operator with a closed graph is continuous. In contrast, unbounded operators with closed graphs are
not necessarily continous.

An unbounded operator T2 is an extension of an unbounded operator T1 if it has a larger domain and it
agrees with T1 on the domain of T1, i.e.

Dom(T2) ⊃ Dom(T1) and T2|Dom(T1) = T1

The expression T2 ⊃ T1 denotes that T2 is an extension of T1.

1 Adjoints of unbounded operators

An unbounded operator T ′, D′ is a subadjoint to T,D, when

〈Tv,w〉 = 〈v, T ′w〉 for all v ∈ D, w ∈ D′

The unique maximal element among all subadjoints is the adjoint T ∗ of T ; the uniqueness and existence of
the adjoint requires proof.

Proposition. Let T,D be an unbounded, densely defined operator on a Hilbert space V .

1. There is a unique maximal T ∗, D∗ among all subadjoints to T,D.

2. T ∗ is closed, in the sense that its graph is closed in V ⊕ V .

3. T ∗ is characterized by its graph:

Graph(T ∗) =
(
U(Graph(T ))

)⊥
where U is the Hilbert space isomorphism V ⊕ V → V ⊕ V given by U(v ⊕ w) = −w ⊕ v.

1



Proof. Note that V ⊕ V is a Hilbert space with inner product 〈v ⊕ w, v′ ⊕ w′〉V⊕V = 〈v, v′〉V + 〈w,w′〉V .
When the Hilbert space is clear from context, we drop the subscripts from 〈 , 〉.

We observe that the adjointness condition can be rewritten as an orthogonality condition, in the following
way. For a given w ∈ V , the condition that

〈Tv,w〉 = 〈v, T ′w〉 for all v ∈ D

is equivalent to
0 = −〈Tv,w〉 + 〈v, T ′w〉 for all v ∈ D

Rewriting the right side,

−〈Tv,w〉 + 〈v, T ′w〉 = 〈−Tv,w〉 + 〈v, T ′w〉 = 〈(−Tv)⊕ v, w ⊕ T ′w〉 = 〈U(v ⊕ Tv), w ⊕ T ′w〉

This shows that, for a given w ∈ V ,

〈Tv,w〉 = 〈v, T ′w〉 for all v ∈ D ⇐⇒ w ⊕ T ′w ∈
(
U(Graph(T ))

)⊥
Thus an operator T ′, D′ is subadjoint to T,D if and only if its graph lies in

(
U(Graph(T ))

)⊥
. Constructing

an operator whose graph equals
(
U(Graph(T ))

)⊥
proves the existence and uniqueness of the adjoint, as

follows.

To a given w ∈ V , we wish to associate w′ ∈ V such that w ⊕ w′ ∈
(
U(Graph(T ))

)⊥
, i.e. such that

〈Tv,w〉 = 〈v, w′〉 for all v ∈ D. This may not always be possible; but the vectors w for which is is possible
constitute the domain of the operator we construct. Since T is densely defined, we can be sure that there is
at most one such w′, for

〈Tv,w〉 = 〈v, w′1〉 = 〈v, w′2〉 for all v ∈ D (dense in V ) =⇒ w′1 = w′2

Thus we have a well-defined map w 7→ w′ on a subset of V . This map is certainly linear, for, if w1 7→ w′1
and w2 7→ w′2 and α, β ∈ C, then, on one hand,

α〈Tv,w1〉 + β〈Tv,w2〉 = 〈Tv, αw1 + βw2〉

and, on the other hand,

α〈Tv,w1〉 + β〈Tv,w2〉 = α〈v, w′1〉 + β〈v, w′2〉 = 〈v, αw′1 + βw′2〉

so αw1 + βw2 7→ αw′1 + βw′2. By construction, its domain is the unique maximal domain among the

domains of subadjoints. Since its graph is precisely
(
U(Graph(T ))

)⊥
, and since orthogonal complements

are closed, the constructed operator is a (graph-)closed operator.

Question. From this proof it seems that the domain of the adjoint T ∗ of T consists precisely of those
vectors w ∈ V for which there exists w′ ∈ V such that 〈Tv,w〉 = 〈v, w′〉 for all v ∈ Dom(T ). Is this correct?

2 Symmetric and self-adjoint unbounded operators

An unbounded operator is symmetric when T ⊂ T ∗, i.e. when (i) the domain of its adjoint is at least as
large as the domain of T and (ii) T and its adjoint agree on the domain of T . Note that this implies

〈Tv,w〉 = 〈v, Tw〉 for all v, w ∈ Dom(T ) ⊂ Dom(T ∗)

An unbounded operator is self-adjoint when T = T ∗, i.e. when (i) the domain of its adjoint, which is
maximal among domains of subadjoints, is precisely the domain of T and (ii) T and its adjoint agree on the
domain of T . Note that this implies

〈Tv,w〉 = 〈v, Tw〉 for all v, w ∈ Dom(T ) = Dom(T ∗)
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For bounded operators, these two notions are the same. For symmetric unbounded operators, we wish to
construct self-adjoint extensions. The Friedrichs extension is one such, as are the members of the family of
extensions, parametrized by a unitary group and described in [?], which we discuss below.

We will need the following property of symmetric operators below.

Proposition. The eigenvalues of a symmetric operator are real.

Proof. Let S be a densely defined symmetric operator. Suppose Sv = λv for some 0 6= v ∈ Dom(S). Then,
on one hand,

〈Sv, v〉 = 〈λv, v〉 = λ〈v, v〉

and, on the other hand,
〈Sv, v〉 = 〈v, Sv〉 = 〈v, λv〉 = λ̄ 〈v, v〉

Since v 6= 0, λ = λ̄, i.e. λ is real.

3 Symmetric extensions of symmetric operators

Note that the adjoint T ∗ of a densely defined symmetric operator T is a closed extension of T . However,
T ∗ need not be symmetric. For T ∗ to be symmetric (T ∗ ⊂ T ∗∗) it would have to be self-adjoint
(T ∗ = T ∗∗), since, in general, T ∗∗ ⊂ T ∗ when T is symmetric, as shown in the following proposition.

Proposition. Let T be a densely defined symmetric operator. Then T is closable with T = T ∗∗. Further,
the closure T is symmetric, T ⊂ T ⊂ T ∗, and T

∗
= T ∗.

Proof. Recalling that the graph of an adjoint S∗ of a linear operator is

Graph(S∗) =
(
U(GraphS)

)⊥
where U : V ⊗ V → V ⊗ V is given by v ⊗ w 7→ −w ⊗ v, and using the fact that, for any subspace X of

V ⊕ V ,
(
U(X)

)⊥
= U−1

(
X⊥
)
, we can see that the graph of T ∗∗ is the closure of the graph of T :

Graph(T ∗∗) =
(
U(GraphT ∗)

)⊥
=

(
U
((
U(GraphT )

)⊥))⊥
= (GraphT )⊥⊥ = (GraphT )

Thus T ∗∗ = T , and T is closable.

Since the closure of an operator can be characterized as the minimal closed extension and since T ∗ is a
closed extension of T , we have T ⊂ T ⊂ T ∗.

We can see that T is symmetric, since, for all v, w ∈ Dom(T ) ⊂ Dom(T ∗),

〈Tv,w〉 = 〈T ∗∗v, w〉 = 〈v, T ∗w〉 = 〈v, Tw〉

To see that the adjoint T
∗

of the closure is the same as the adjoint of T , we look at the graph of
T ∗ = T ∗∗∗. By the argument above, the graph of (T ∗)∗∗ is the closure of the graph of T ∗. Since the graph
of T ∗ is closed, this means that the graph of T ∗∗∗ is the graph of T ∗. To summarize:

Graph(T
∗
) = (Graph(T ∗)) = Graph(T ∗)

Thus the adjoint of T is simply T ∗.

Note. In fact, any symmetric extension S of T is a restriction of the adjoint T ∗, as follows. First,
Dom(S) ⊂ Dom(T ∗), since S is subadjoint to T . And, for all v ∈ Dom(T ), w ∈ Dom(S),

〈v, Sw〉 = 〈Sv,w〉 = 〈Tv,w〉 = 〈v, T ∗w〉

The density of Dom(T ) implies that T ∗w = Sw, proving that T ∗ agrees with S on the domain of S.
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Note. Although T ∗∗ is a closed, symmetric extension of T , it is typically not self-adjoint. If it is
self-adjoint, it is the unique self-adjoint extension of T , as follows. Suppose S is a self-adjoint extension of
T . Then S is closed, and thus an extension of T . It is also a restriction of T ∗, since it is symmetric. Since
taking adjoints is inclusion-reversing,

T ⊂ T ⊂ S = S∗ ⊂ T
∗ ⊂ T ∗

Self-adjointness of T means T = T
∗
, forcing T = S.

A symmetric, densely defined operator is essentially self-adjoint if it has a unique self-adjoint extension.
Before discussing criteria for essential self-adjointness and for the existence of self-adjoint extensions in
general, we discuss one construction of self-adjoint extensions, due to Friedrichs.

4 Friedrichs’ self-adjoint extension

The Friedrichs extension of a positive, symmetric, densely defined operator is a self-adjoint extension,
which can be understood as an extension “by closure” in a certain sense. In fact, this construction works
for a broader class of symmetric, densely defined operators, those that are semi-bounded.

A symmetric operator T is lower semi-bounded if there is a real constant c such that

〈Tv, v〉 ≥ c 〈v, v〉 for all v ∈ Dom(T )

Positivity is a special case of lower semi-boundedness, with c = 0. A symmetric operator is upper
semi-bounded if there is a real constant C such that

〈Tv, v〉 ≤ C 〈v, v〉 for all v ∈ Dom(T )

Note that every semi-bounded operator can be easily obtained from a positive operator by multiplying by
(−1), if necessary, and adding an appropriate constant: if T is lower semi-bounded with lower bound c,
then T − c is positive; if T is upper semi-bounded with upper bound C, then C − T is a positive operator.

Friedrichs’ construction of self-adjoint extensions is most easily described for lower semi-bounded operators
with lower bound c = 1. We will briefly describe the Friedrichs extension, before giving the full
construction in the proof of the theorem below.

Let T be a symmetric, densely defined operator on a Hilbert space V with inner product 〈 , 〉. Suppose T is
lower semi-bounded with lower bound c = 1, i.e.

〈Tv, v〉 ≥ 〈v, v〉 for all v ∈ Dom(T )

We will define a new inner product 〈 , 〉1 on Dom(T ) by

〈v, w〉1 = 〈Tv,w〉 = 〈v, Tw〉 for all v, w ∈ Dom(T )

Let V 1 be the Hilbert space completion of Dom(T ) with respect to the topology induced by 〈 , 〉1. Thus
Dom(T ) is a dense subspace of V 1, with respect to the 〈 , 〉1-topology, in addition to being a dense
subspace of V , with respect to the 〈 , 〉-topology . The 〈 , 〉1-topology is finer than the 〈 , 〉-topology, so V 1

is a closed subspace of V .

Note. In an extended sense, 〈 , 〉1 makes sense on V ×Dom(T ) and Dom(T )× V : for all h ∈ V ,
v ∈ Dom(T ), we can define 〈v, h〉1 = 〈Tv, h〉 and 〈h, v〉1 = 〈h, Tv〉.

The Friedrichs extension T̃ of T will be the unique self-adjoint extension of T with domain inside V 1. In
particular, we will see that an element w ∈ V is in Dom(T̃ ) precisely if there is an element h ∈ V such that

〈v, h〉 = 〈v, w〉1 for all v ∈ V 1; in this case T̃ (w) = h. Thus we have

〈T̃ v, w〉 = 〈v, T̃w〉 = 〈v, w〉1 for all v, w ∈ Dom(T̃ )
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Note. In fact, asymmetric versions are also true: 〈T̃ v, w〉 = 〈v, w〉1 for all v ∈ Dom(T̃ ) and w ∈ V 1, and

similarly 〈v, T̃w〉 = 〈v, w〉1 for all v ∈ V 1 and w ∈ Dom(T̃ ).

Theorem (Friedrichs). Every semi-bounded, symmetric, densely defined operator has a self-adjoint
extension.

Proof. As discussed above, it suffices to consider a lower semi-bounded, symmetric, densely defined
operator T , with lower bound c = 1. We will define an injective bounded linear operator B, whose inverse,
defined on the image of B, will be the Friedrichs extension of T .

As in the discussion above, define 〈 , 〉1 on Dom(T ) by 〈v, w〉1 = 〈Tv,w〉 = 〈v, Tw〉. We verify that 〈 , 〉1
is an inner product on Dom(T ).

Positivity and nondegeneracy follow from the lower bound for T : 〈v, v〉1 = 〈Tv, v〉 ≥ 〈v, v〉 ≥ 0 for all
v ∈ Dom(T ), and

0 = 〈v, v〉1 = 〈Tv, v〉 ≥ 〈v, v〉 =⇒ v = 0

Conjugate symmetry follows from the symmetry of T and the conjugate symmetry of 〈 , 〉:

〈v, w〉1 = 〈Tv,w〉 = 〈v, Tw〉 = 〈Tw, v〉 = 〈w, v〉1 for all v, w ∈ Dom(T )

Lastly, sesquilinearity follows from the linearity of T and the sesquilinearity of 〈 , 〉.

As above, let V 1 be the Hilbert space completion of Dom(T ) with respect to the topology induced by 〈 , 〉1.

Claim. The abstract Hilbert space completion V 1 can be identified with the closure of Dom(T ) with
respect to the topology induced by 〈 , 〉1, we may consider it as a subspace of V .

We will define a map B : V → V 1 as follows: for any h ∈ V , Bh will be the unique element of V 1 satisfying

〈v, h〉 = 〈v,Bh〉1 or, equivalently, 〈h, v〉 = 〈Bh, v〉1 for all v ∈ V 1

That such an element exists requires proof.

Claim. The map B : V → V 1 and is a well-defined, bounded linear operator. Further,

1. B is positive and symmetric (with respect to 〈 , 〉) and thus self-adjoint,

2. B is injective, and

3. the image of B is dense with respect to both the topology induced by 〈 , 〉 and the topology induced
by 〈 , 〉1.

Proof. We start with well-definedness. For any h ∈ V , consider the linear functional λh : v 7→ 〈v, h〉
restricted to V 1. We show that λh is bounded on V 1, and thus a continous linear functional on V 1, as
follows.

‖λh‖op = sup
v∈V 1

|λh(v)|
‖v‖1

= sup
v∈V 1

|〈v, h〉|
‖v‖1

≤ sup
v∈V 1

‖v‖ · ‖h‖
‖v‖1

≤ sup
v∈V 1

‖v‖1 · ‖h‖
‖v‖1

= ‖h‖

Thus λh ∈ (V 1)∗. Since V 1 is a Hilbert space, the Riesz Representation Theorem implies that there is a
unique w ∈ V 1 such that λh(v) = 〈v, w〉1. Let B(h) = w. Then B is a well-defined map V → V 1.

Linearity of B follows easily from the sesquilinearity of 〈 , 〉 and 〈 , 〉1: for h1, h2 ∈ V and α, β ∈ C,

〈v,B(αh1+βh2)〉1 = 〈v, αh1+βh2〉 = ᾱ〈v, h1〉+ β̄〈v, h2〉 = ᾱ〈v,Bh1〉1 + β̄〈v,Bh2〉1 = 〈v, αBh1 +βBh2〉1

for all v ∈ V 1. Thus B(αh1 + βh2) = αB(h1) + βB(h2).
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Positivity of B follows from the positivity of 〈 , 〉1: for any h ∈ V , Bh ∈ V 1, so

〈Bh, h〉 = 〈Bh,Bh〉1 ≥ 0

Symmetry of B follows from the conjugate symmetry of 〈 , 〉1 and 〈 , 〉: for h1, h2 ∈ V ,

〈Bh1, h2〉 = 〈Bh1, Bh2〉1 = 〈Bh2, Bh1〉1 = 〈Bh2, h1〉 = 〈h1, Bh2〉

Note that, since B is everywhere-defined, symmetry is the same as self-adjointness.

For injectivity, take h1, h2 ∈ V , and suppose Bh1 = Bh2. Then, for all v ∈ V 1,

〈v, h1〉 = 〈v,Bh1〉1 = 〈v,Bh2〉1 = 〈v, h2〉

Since V 1 is dense in V , this implies that h1 = h2.

Next we show that the image of B is dense in V with respect to the 〈 , 〉-topology. It suffices to show (?)
that the kernal is trivial. Suppose h ∈ ker(B). Then, for all v ∈ V 1,

〈v, h〉 = 〈v,Bh〉1 = 〈v, 0〉1 = 0

Since V 1 is dense in V , this implies that h = 0. Since ker(B|V 1) ⊂ ker(B), this also implies that the image
of B is dense in V 1, with respect to the 〈 , 〉1-toplogy, right? . . . completing the proof of the claim.

Note. It is not true that, for a linear map Φ : V → V on a Hilbert space V , the image is dense if and only
if the kernel is trivial!

Let A : img(B)→ V be the inverse of B, which exists on a subspace of V . Then A is an unbounded linear
operator, whose domain is dense in V 1 with respect to the 〈 , 〉1-topology and dense in V with respect to
the 〈 , 〉-topology. And, for u ∈ Dom(A), v ∈ V 1,

〈Au, v〉 = 〈u, v〉1 and 〈v,Au〉 = 〈v, u〉1

Claim. The densely defined operator A : Dom(A)→ V is positive, symmetric, and in fact self-adjoint.

Proof. Positivity and symmetry follow from the positivity and symmetry of B. Let v, v′ ∈ Dom(A). Then
v = Bh and v′ = Bh′ for some h, h′ ∈ V , and

〈Av, v〉 = 〈h,Bh〉 = 〈Bh, h〉 ≥ 0

〈Av, v′〉 = 〈h,Bh′〉 = 〈Bh, h′〉 = 〈v,Av′〉

However, since A is not everywhere-defined, symmetry does not imply self-adjointness. To prove that A is
self-adjoint, we will show that its graph is equal to the graph of its transpose. Since the adjoint operator is
characterized by its graph, this will be sufficient to prove that A is self-adjoint.

Since A is densely defined, it has a well defined adjoint, characterized by its graph:

Graph(A∗) =
(
U(GraphA)

)⊥
where U : V ⊕ V → V ⊕ V be given by v ⊕ w 7→ −w ⊕ v.

The self-adjointness of B implies that Graph(B) = Graph(B∗) =
(
U(GraphB)

)⊥
.

To relate the graph of A∗ to the graph of B, we define S : V ⊕ V → V ⊕ V by v ⊕w 7→ w⊕ v. Then clearly
S interchanges the graphs of A and B. Further, U ◦ S = −S ◦ U , since −v ⊕ w = −(v ⊕−w), and, for any

subspace X of V ⊕ V , and
(
S(X)

)⊥
= S(X⊥) since v ⊕ w ∈

(
S(X)

)⊥
means

〈v ⊕ y, w ⊕ x〉 = 0 for all x⊕ y ∈ X
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and v ⊕ w ∈ S(X⊥) means
〈w ⊕ x, v ⊕ y〉 = 0 for all x⊕ y ∈ X

which is clearly equivalent. Thus

Graph(A∗) =
(
U(GraphA)

)⊥
=

(
U ◦S(GraphB)

)⊥
=

(
−S◦U(GraphB)

)⊥
= −S

(
U(GraphB)⊥

)
= −S

(
Graph(B∗)

)
= −S(GraphB) = −S(GraphB) = −GraphA = GraphA

This completes the proof of the claim.

It only remains to show A is an extension of T . We know that Dom(A) and Dom(T ) are both subspaces of
V 1, but we want to show that Dom(A) ⊃ Dom(T ) and that A agrees with T on Dom(T ).

Recall that the domain of A is the image of B, which consists of all w ∈ V 1 such that there is an h ∈ V
satisfying 〈v, w〉1 = 〈v, h〉, for all v ∈ V 1. Clearly, for w ∈ Dom(T ), taking h = Tw will work, since, by the
definition of 〈 , 〉1, 〈v, w〉1 = 〈v, Tw〉 for all v ∈ V 1.

Now, since w ∈ Dom(A), it is also true that 〈v, w〉1 = 〈v,Aw〉 for all v ∈ V 1. Thus 〈v, Tw〉 = 〈v,Aw〉 for
all v ∈ V 1, and, by the density of V 1, Aw = Tw. Thus A is an extension of T .

Note. The Friedrichs extension is the unique self-adjoint extension whose domain is contained in V 1.

Corollary. Every positive, symmetric, densely defined operator S has a Friedrichs extension S̃, the unique
self-adjoint extension of S, whose domain is contained in the subspace V 1, the Hilbert space completion of
Dom(S) with respect to the norm induced by the inner product

〈v, w〉1 = 〈(S + 1)v, w〉 = 〈Sv,w〉 + 〈v, w〉

Proof. Suppose S is a positive, symmetric, densely defined operator. Let T = S + 1. Then Friedrichs’
construction, given in the proof above, gives a self-adjoint extension T̃ of T . Thus S̃ = T̃ − 1 is a
self-adjoint extension of S.

5 Gelfand triples and another construction of the Friedrichs
extension

As above, let T be a symmetric, densely defined operator on a Hilbert space V with inner product 〈 , 〉.
Suppose T is lower semi-bounded with lower bound c = 1, i.e.

〈Tv, v〉 ≥ 〈v, v〉 for all v ∈ Dom(T )

and let V 1 be the Hilbert space completion of Dom(T ) with respect to the topology induced by 〈 , 〉1,
defined on Dom(T ) by:

〈v, w〉1 = 〈Tv,w〉 = 〈v, Tw〉 for all v, w ∈ Dom(T )

With j : V 1 ↪→ V the inclusion, j∗ : V ∗ → (V 1)∗ the adjoint to this inclusion, namely j∗ : λ 7→ λ|V 1 , and
Λ : V → V ∗ the Riesz-Fisher isomorphism Λ : v 7→ (u 7→ 〈v, u〉), we have

V 1 j
↪−→ V

Λ−→
≈

V ∗
j∗−→ (V 1)∗

Note that j∗ is injective, since λ, µ ∈ V ∗ with j∗(λ) = j∗(µ) means that λ and µ are continuous linear
functionals on V that agree on the dense subspace V 1 of V , implying that λ = µ on V , i.e. λ = µ as
elements of V ∗. Thus, denoting (V 1)∗ by V −1, identifying V with V ∗ under the isomorphism Λ on one
hand and identifying V ∗ with its preimage under j∗ on the other hand, we consider these spaces as nested:
V 1 ⊂ V ⊂ V −1 and call them a Gelfand triple.
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Note. The inclusion of V 1 to V −1 is via the composite map j∗ ◦ Λ ◦ j rather than the canonical inclusion
of a Hilbert space to its dual. In particular, this means that we consider an element w ∈ V 1 as an element
of V −1 via u 7→ 〈u,w〉 rather than u 7→ 〈u,w〉1.

The Friedrichs extension of T will be a restriction of the map T# : V 1 → V −1 given by

(T#v)(w) = 〈v, w〉1 for v, w ∈ V 1

We claim that T# agrees with T on Dom(T ) and restricting T# to the preimage of V under T# gives the
Fredrichs extension of T , as is expressed in the commutativity of the following diagram:

V �
� // V −1

Dom(T ) �
� //

T

::

Dom(T̃ )

T̃

OOOO

� � // V 1

T#

OO

To see that T# agrees with T on Dom(T ), take v ∈ Dom(T ), and note that we consider Tv as an element
of V −1 by identifying Tv with the map u 7→ 〈u, Tv〉, where u lies in V 1. Then

(Tv)(u) = 〈u, Tv〉 = 〈u, v〉1 = (T#v)(u) for all u ∈ V 1

Recall from above that the domain of the Friedrichs extension of T is

Dom(T̃ ) = {w ∈ V 1 : there is v ∈ V such that 〈u,w〉1 = 〈u, v〉 for all u ∈ V 1}

This is precisely the preimage of V under T#, since the condition that T#w ∈ V means there exists v ∈ V
such that T#w = v in V −1, i.e. such that the maps u 7→ 〈u,w〉1 and u 7→ 〈u, v〉 agree on V 1. Certainly T̃

agrees with T# on Dom(T̃ ), since, for all v ∈ Dom(T̃ ),

(T̃ v)(u) = 〈u, T̃ v〉 = 〈u, v〉1 = (T#v)(u) for all u ∈ V 1

considering T̃ v as an element of V −1 by identifying it with the map u 7→ 〈u, T̃ v〉.

6 Criteria for the existence of self-adjoint extensions

Lemma. Suppose T is a closed, symmetric, densely defined unbounded operator. Let λ ∈ C−R. Then the
image (T − λ)Dom(T ) is closed.

Proof. (Outline) Consider a Cauchy sequence (T − λ)viin the image. To show that this sequence converges
we will use an auxilliary operator U , which is defined as follows. Since T is symmetric, λ ∈ C−R is not an
eigenvalue for T and (T − λ) is injective on Dom(T ). Thus we may define an operator
U = (T − λ̄)(T − λ)−1 on the image (T − λ)Dom(T ). This operator is unitary in the sense that
〈Uv,Uw〉 = 〈v, w〉 for all v, w ∈ (T − λ)Dom(T ). (See the proof of Claim 2.0.1 in [2].) The unitarity of U
is used to show that U(T − λ)vi) = (T − λ̄)vi is Cauchy. See the first part of the proof of Theorem 2.0.2 in
[2] for the rest of the proof.

Lemma (Claim 2.0.6 in [2]). Suppose T is a symmetric, densely defined unbounded operator. Let
λ ∈ C− R. Then the image (T − λ)Dom(T ) is dense if and only if λ̄ is not an eigenvalue for T ∗.

Proof. First we suppose the image (T − λ)Dom(T ) is dense and show that λ̄ is not an eigenvalue for T ∗.
Suppose v satisfies (T ∗ − λ̄)v = 0. Then, for all w ∈ Dom(T ),

0 = 〈(T ∗ − λ̄)v, w〉 = 〈v, (T − λ)w〉

Since (T − λ)Dom(T ) is dense, this implies that v = 0, i.e. λ̄ is not an eigenvalue for T ∗.
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Next we suppose that the image (T − λ)Dom(T ) is not dense and show that λ̄ is an eigenvalue for T ∗. In
this case, there is a nonzero vector v that is in the orthogonal complement to the image (T − λ)Dom(T ).
Thus, for all w ∈ Dom(T )

0 = 〈v, (T − λ)w〉 = 〈v, Tw〉 − 〈v, λw〉 = 〈v, Tw〉 − 〈λ̄v, w〉

i.e. 〈v, Tw〉 = 〈λ̄v, w〉 for all w ∈ Dom(T ). By the definition of the adjoint as the maximal subadjoint, this
means that v ∈ Dom(T ∗) and T ∗v = λ̄v. Since v 6= 0, this proves that λ̄ is an eigenvalue for T ∗.

Theorem (von Neumann). Suppose T is a closed, symmetric, densely defined unbounded operator. Let
λ ∈ C− R such that the images (T − λ)Dom(T ) and (T − λ̄)Dom(T ) are dense. Then T is self-adjoint.

Proof. It suffices to show that Dom(T ∗) ⊂ Dom(D). Take any v ∈ Dom(T ∗), and consider (T ∗ − λ)v.

By the first lemma, the images (T − λ)Dom(T ) and (T − λ̄)Dom(T ) are closed. Since they are also dense,
both are equal to the whole space. In particular, there is a vector v′ ∈ Dom(T ) such that
(T − λ)v′ = (T ∗ − λ)v. We will show that, in fact, v′ = v, proving that v ∈ Dom(T ∗).

For all w ∈ Dom(T ) ⊂ Dom(T ∗),

〈v′, (T − λ̄)w〉 = 〈v′, (T ∗ − λ̄)w〉 since T ∗ is an extension of T

= 〈(T − λ)v′, w〉 since v′ ∈ Dom(T ∗) and w ∈ Dom(T )

= 〈(T ∗ − λ)v, w〉 by the definition of v′

= 〈v, (T − λ̄)w〉 since v ∈ Dom(T ∗) and w ∈ Dom(T )

Since (T − λ̄)Dom(T ) is dense, this implies that v′ = v.

Corollary. Let T be a closed, symmetric, densely defined operator and λ ∈ C− R. If ker(T ∗ − λ) and
ker(T ∗ − λ̄) are both trivial, then T is self-adjoint.

Proof. Since ker(T ∗ − λ) and ker(T ∗ − λ̄) are both trivial, neither λ nor λ̄ is an eigenvalue for T ∗, so by the
second lemma, the images (T − λ)Dom(T ) and (T − λ̄)Dom(T ) are both dense, and, by the theorem, T is
self-adjoint.

Corollary (Criteria for essential self-adjointness). Suppose T is a symmetric, densely defined unbounded
operator. Let λ ∈ C− R satisfy either one of the following conditions:

1. The images (T − λ)Dom(B) and (T − λ̄)Dom(B) are dense.

2. Neither λ nor λ̄ are eigenvalues for the adjoint T ∗.

Then T is essentially self-adjoint, and the closure T of T is the unique self-adjoint extension of T .

Proof. We have shown above that the two conditions are equivalent, so it suffices to show that the first
condition is a criterion for essential self-adjointness. Since T is symmetric, T ⊂ T = T ∗∗ ⊂ T ∗. Thus, for
all v, w ∈ Dom(T ),

〈Tv,w〉 = 〈(T ∗)∗v, w〉 = 〈v, T ∗w〉 = 〈v, Tw〉

i.e. T is symmetric. Further, for any λ ∈ C− R, (T − λ)Dom(T ) ⊃ (T − λ)Dom(T ), so is dense. By the
theorem T is self-adjoint.
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7 Von Neumann’s family of self-adjoint extensions

Let B be a densely defined symmetric operator on a Hilbert space V , and let B∗ be its adjoint. For any
η ∈ C− R, we define the deficiency spaces of B at η and η̄ by

Vη(B) = ker(B∗ − η) Vη̄(B) = ker(B∗ − η̄)

(Nontrivial deficiency spaces are the analogues of eigenspaces of operators on finite dimensional spaces.)

An alternate characterization of deficiency spaces will be useful.

Lemma. For η ∈ C− R, the deficiency space of a symmetric, densely defined, graph closed operator B at
η can be characterized as the orthogonal complement of the image of Dom(B) under (B − η̄), i.e.

Vη
def
= ker(B∗ − η) =

(
(B − η̄)Dom(B)

)⊥
Proof. Suppose w ∈ Vη = ker(B∗ − η) ⊂ Dom(B∗). Then, for all v ∈ Dom(B),

0 = 〈v, 0〉 = 〈v, (B∗ − η)w〉 = 〈(B − η̄)v, w〉

i.e. w ∈
(
B − η̄)Dom(B)

)⊥
.

On the other hand, suppose w ∈
(
B − η̄)Dom(B)

)⊥
. In order to use the adjointness relation again, we first

show that w ∈ Dom(B∗), as follows. For all v ∈ Dom(B),

0 = 〈(B − η̄)v, w〉 = 〈Bv,w〉 − 〈η̄v, w〉 = 〈Bv,w〉 − 〈v, ηw〉

i.e. 〈Bv,w〉 = 〈v, ηw〉 for all v ∈ Dom(B). This implies that w ∈ Dom(B∗), since the domain of B∗

consists precisely of vectors w to which we may associate some w′ such that 〈Bv,w〉 = 〈v, w′〉 for all
v ∈ Dom(B). Thus, by the adjointness relation,

0 = 〈(B − η̄)v, w〉 = 〈v, (B∗ − η)w〉 for all v ∈ Dom(B)

Since B is densely defined, this implies that (B∗ − η)w = 0, i.e. w ∈ ker(B∗ − η).

Lemma. As a function of η, dimVη(B) is a constant on the upper (lower) half plane.

The deficiency indices of B (at η) are the dimensions of its deficiency spaces Vη and Vη̄. By Lemma A.1, we
may refer simply to the the deficiency indices of B, as a well-defined pair, without reference to a specific η.

Theorem. Suppose B is a closed, symmetric, densely defined unbounded operator. Then B has deficiency
indices both equal to zero if and only if B is self-adjoint.

Proof. If B has deficiency indices both equal to zero, then, for any η ∈ C−R, ker(B∗ − η) and ker(B∗ − η̄)
are both trivial, so B is self-adjoint by the results in the previous section.

If, on the other hand, B is self-adjoint, then B∗ is symmetric, so its eigenvalues are real, and, for any
η ∈ C− R, the deficiency spaces ker(B∗ − η) and ker(B∗ − η̄) are trivial.

Lemma. Suppose B is a closed, positive, symmetric operator with nonzero deficiency indices that are
equal. Fix η ∈ C− R. Then for each unitary map U : Vη(B)→ Vη̄(B), there is a self-adjoint extension
BU : DU → V , where

DU = {f = g + h+ Uh : g ∈ Dom(B), h ∈ Vη(B)}

and the action of BU is the restriction of B∗, namely,

BUf = Bg + η h + η̄ Uh

Conversely, every self-adjoint extension of B is of this form.
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Proof. That BU is an extension of B is clear, since DU ⊃ Dom(B) and BUf = Bf for f ∈ Dom(B).

Next we show that BU is symmetric, i.e. 〈BUf1, f2〉 = 〈f1, BUf2〉 for any f1, f2 ∈ DU .

Since f1 = g1 + h1 + Uh1 for some g ∈ Dom(B) and h1 ∈ Vη,

〈BUf1, f2〉 = 〈Bg1 + ηh1 + η̄Uh1, f2〉 = 〈Bg1, f2〉 + 〈ηh1, f2〉 + 〈η̄Uh1, f2〉

and since f2 = g2 + h2 + Uh2 for some g2 ∈ Dom(B) and h1 ∈ Vη,

〈BUf1, f2〉 = 〈Bg1, g2〉 + 〈Bg1, h2〉 + 〈Bg1, Uh2〉
+ 〈ηh1, g2〉 + 〈ηh1, h2〉 + 〈ηh1, Uh2〉
+ 〈η̄Uh1, g2〉 + 〈η̄Uh1, h2〉 + 〈η̄Uh1, Uh2〉

Since B is symmetric and g1 and g2 are in the domain of B, 〈Bg1, g2〉 = 〈g1, Bg2〉.

By definition, the deficiency space Vη = ker(B∗ − η) ⊂ Dom(B∗). Since h2 ∈ Vη,

〈Bg1, h2〉 = 〈g1, B
∗h2〉 = 〈g1, ηh2〉

Similarly, since Uh2 ∈ Vη̄ ⊂ Dom(B∗), 〈Bg1, Uh2〉 = 〈g1, η̄ Uh2〉. By the reverse argument,
〈ηh1, g2〉 = 〈h1, Bg2〉 and 〈η̄ Uh1, g2〉 = 〈Uh1, Bg2〉. Thus,

〈BUf1, f2〉 = 〈g1, Bg2〉 + 〈g1, ηh2〉 + 〈g1, η̄ Uh2〉
+ 〈h1, Bg2〉 + 〈ηh1, h2〉 + 〈ηh1, Uh2〉
+ 〈Uh1, Bg2〉 + 〈η̄Uh1, h2〉 + 〈η̄Uh1, Uh2〉

Using the Hermitian property of 〈 , 〉 and the unitarity of U and then regrouping terms,

〈BUf1, f2〉 = 〈g1, Bg2〉 + 〈g1, ηh2〉 + 〈g1, η̄ Uh2〉
+ 〈h1, Bg2〉 + 〈Uh1, η̄ Uh2〉 + 〈h1, η̄ Uh2〉
+ 〈Uh1, Bg2〉 + 〈Uh1, ηh2〉 + 〈h1, ηh2〉

= 〈g1, Bg2〉 + 〈g1, ηh2〉 + 〈g1, η̄ Uh2〉
+ 〈h1, Bg2〉 + 〈h1, ηh2〉 + 〈h1, η̄ Uh2〉
+ 〈Uh1, Bg2〉 + 〈Uh1, ηh2〉 + 〈Uh1, η̄ Uh2〉

= 〈f1, BUf2〉

To complete the proof that BU is self-adjoint we prove that its deficiency indices are both zero. The
deficiency space at η is

ker(B∗U − η) =
(
(BU − η̄)Dom(BU )

)⊥
Note that (BU − η̄)Dom(BU ) consists of functions of the form (BU − η̄)(g + h+ Uh) where g ∈ Dom(B)

and h ∈ Vη = ker(B∗ − η) =
(
(B − η̄)Dom(B)

)⊥
, and in this case

(BU − η̄)(g + h+ Uh) = (B − η̄)g + (η − η̄)h + (η̄ − η̄)Uh = (B − η̄)g + (η − η̄)h

Here (B − η̄)g ranges over (B − η̄)Dom(B) and, since η 6∈ R, (η − η̄) 6= 0, so (η − η̄)h ranges over the

orthogonal complement, the deficiency space of B at η, Vη =
(
(B − η̄)Dom(B)

)⊥
. Thus (BU − η̄)Dom(BU )

is dense in V , its orthogonal complement, the deficiency space of BU at η, is zero, and the deficiency index
of BU at η is zero. The same argument shows that the deficiency space of BU at η̄ is zero.

(Proof of converse omitted.)

Note. In particular, the Friedrichs extension can be described as a member of this family of extensions.
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8 Spectrum and resolvents of unbounded operators

Another important result (for proof see [1]) regards the existence of resolvents: for any densely defined,
self-adjoint operator T and for every λ ∈ C− R, the operator Rλ = (T − λ)−1 is an everywhere defined
linear operator. Further, if T is also positive, Rλ is everywhere defined whenever λ ∈ [0,∞).
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