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On graphs for which every planar immersion lifts to
a knotted spatial embedding

Amy DeCelles, Joel Foisy, Chad Versace and Alice Wilson

(Communicated by Ann Trenk)

We call a graph G intrinsically linkable if there is a way to assign over/under
information to any planar immersion of G such that the associated spatial em-
bedding contains a pair of nonsplittably linked cycles. We define intrinsically
knottable graphs analogously. We show there exist intrinsically linkable graphs
that are not intrinsically linked. (Recall a graph is intrinsically linked if it con-
tains a pair of nonsplittably linked cycles in every spatial embedding.) We also
show there are intrinsically knottable graphs that are not intrinsically knotted. In
addition, we demonstrate that the property of being intrinsically linkable (knot-
table) is not preserved by vertex expansion.

1. Introduction

We start with a quick review of some definitions. A graph G consists of a finite
nonempty set V (G) of vertices together with a set E(G) of unordered pairs of
(usually distinct) vertices, called edges. If x = (u, v) ∈ E(G), for u, v ∈ V (G), we
say that u and v are adjacent vertices, and that vertex u and edge x are incident
with each other, as are v and x .

A walk in a graph G is an alternating sequence of vertices and edges

v0, x1, v1, . . . , vn−1, xn, vn

beginning and ending with vertices, in which each edge is incident with the two
vertices immediately preceding and following it. A cycle is a walk with n ≥ 2
vertices and with all vertices distinct except v0 = vn . We say such a cycle has
length n.
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Let G be a graph with

V (G)= {v1, v2, . . . , vn} and E(G)= {x1, x2, . . . , xm}.

A spatial embedding of G is a map f of G to a subspace G(M) of R3 such that

G(M)=
( n⋃

i=1

vi (M)
)
∪

( m⋃
j=1

x j (M)
)
,

where

(i) v1(M), v2(M), . . . , vn(M) are n distinct points of R3 with f (vi )= vi (M);

(ii) x1(M), . . . , xm(M) are m mutually disjoint open arcs in R3 with

f (xi )= xi (M);

(iii) x j (M)∩ vi (M)=∅, i = 1, . . . , n, j = 1, . . . ,m;

(iv) if x j = (v j1, v j2), then the open arc x j (M) has v j1(M) and v j2(M) as end
points for j = 1, . . . ,m.

In the above definition, an arc in R3 is a homeomorphic image of [0, 1]; an
open arc is an arc less its two end points, the images of 0 and 1. More informally,
a spatial embedding is a way to place a given graph in space.

We define a planar immersion of a graph G similar to a spatial embedding of G,
except the codomain is R2 instead of R3, and we allow the image of edges of G to
intersect, though we require that no three edges can intersect at the same point and
we require the image of our edges to intersect transversely (they intersect locally
in only one point, and they are not tangent to each other). We will assume that
all embeddings and immersions are tame, that is, can be approximated by a finite
collection of line segments. We will often simply use the term immersion instead
of planar immersion. We use Ĝ to denote the image of an immersion of G under
the map f̂ . If H is a subgraph of G, we similarly denote by Ĥ the image of H
under f̂ .

Given an immersion f̂ of a graph G with image Ĝ, one can, by assigning
over/under information to its double points, lift the immersion into 3-space, thereby
creating a well-defined spatial embedding f̃ with image G̃. If π is the standard
projection π(x, y, z)= (x, y), and f̂ = π ◦ f̃ , we have the commutative diagram

G̃

G
f̂ -

f̃

-

Ĝ

π

?
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If there exists a lift of the immersion f̂ whose image contains a pair of nonsplit-
tably linked cycles (in other words, cannot be deformed to have a planar projection
with no crossings between strands from two different components), then we say
the immersion is linkable. We define the graph G to be intrinsically linkable if
every immersion of G is linkable. We define knottable and intrinsically knottable
analogously.

The study of intrinsically linkable graphs was inspired by two different ideas:
intrinsically linked graphs, and graphs with a knot inevitable projection. The prop-
erty of having a knot inevitable projection was introduced by Taniyama [1995] and
studied by others (for example, Sugiura and Suzuki [2000], and Tamura [2004]).
A (planar) graph has a knot inevitable projection if there exists a regular projection
(that is, a planar immersion) of the graph such that every choice of over/under-
crossings induces a spatial embedding that is knotted (in other words, cannot be
deformed to a spatial embedding that has a planar projection without crossings).

The first results concerning intrinsically linked graphs were written up by Con-
way and Gordon [1983], and by Sachs [1983], who independently showed that
every spatial embedding of K6 (the graph on 6 vertices that contains all 15 possible
edges between vertices) contains a pair of disjoint cycles that form a nonsplittable
link, that is, K6 is intrinsically linked. (See [Adams 2004] for a good background
on knot theory in general, and on intrinsically linked and knotted graphs in partic-
ular.)

Conway and Gordon [1983] also showed that every spatial embedding of K7

contains a cycle that forms a nontrivial knot, that is, K7 is intrinsically knot-
ted. Robertson et al. [1995] later showed that the collection of minor-minimal
intrinsically linked graphs is exactly the Petersen family, that is, the seven graphs
obtainable from the classic Petersen graph by repeated 1-Y and Y -1 exchanges.
No one has yet classified the minor-minimal intrinsically knotted graphs, though
they are known to be finite in number [Robertson and Seymour 2004].

Recall that a graph H is a minor of a graph G if H can be obtained from G by a
sequence of deletions and/or contractions of edges and/or deletions of vertices. A
graph G is minor minimal with respect to a given property if it has the property, but
no minor of G has the property. Let a, b, and c be vertices of a graph G such that
edges (a, b), (a, c), and (b, c) exist. Then a 1-Y exchange on a triangle (a, b, c)
of graph G is as follows. Vertex v is added to G, edges (a, b), (a, c), and (b, c)
are deleted, and edges (a, v), (b, v), and (c, v) are added. A Y -1 exchange is the
reverse operation.

Clearly, an intrinsically linked (knotted) graph is also intrinsically linkable (knot-
table), but the converse is not true. In this paper, we present several intrinsically
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linkable graphs, each of which is a proper minor of some graph in the Petersen fam-
ily (and hence not intrinsically linked), and several intrinsically knottable graphs,
which are all in the Petersen family (and not intrinsically knotted).

Recall that a vertex expansion of a vertex v in a graph G is achieved by replacing
v with two vertices v′ and v′′, adding the edge (v′, v′′) and connecting a subset of
the edges that were incident to v to v′ and the rest of the edges that were incident to
v to v′′. A graph G is considered to be an expansion of a graph H if G can be ob-
tained by vertex expansions of H . It is well known that vertex expansions preserve
intrinsic linking and intrinsic knotting; see [Nešetřil and Thomas 1985; Fellows and
Langston 1988]. We demonstrate several intrinsically linkable (knottable) graphs
for which vertex expansion destroys intrinsic linkability (knottability). We thus
conjecture that vertex expansion preserves intrinsic linkability (knottability) only
for those graphs that are intrinsically linked (knotted).

2. Intrinsically linkable graphs

We start this section with a quick introduction to the linking number. Recall that
given a link of two components, L1 and L2 (two disjoint circles embedded in
space), one computes the linking number of the link by examining a projection
(with over and under-crossing information) of the link. Choose an orientation for
each component of the link. At each crossing between two components, one of
the pictures in Figure 1 will hold. We count +1 for each crossing of the first
type (where you can rotate the over-strand counterclockwise to line up with the
under-strand) and −1 for each crossing of the second type. To get the linking
number, lk(L1, L2), take the sum of +1’s and −1’s and divide by 2. One can
show that the absolute value of the linking number is independent of projection,
and of chosen orientations (see [Adams 2004] for further explanation). Note that
if lk(L1, L2) 6= 0, then the associated link is nonsplit. The converse does not hold.
That is, there are nonsplit links with linking number 0 (the Whitehead link is a
famous example, see again [Adams 2004]).

Lemma 2.1. Let a graph G consist of two disjoint cycles A and B. A planar
immersion f̂ of G is linkable if and only if Â and B̂ intersect.

Proof. Suppose there is a planar immersion f̂ with disjoint cycles Â and B̂ that
intersect. We will construct from f̂ a spatial embedding f̃ in which the linking
number lk( Ã, B̃) is nonzero. Arbitrarily choose orientations for Â and B̂, and then
choose each crossing in Ĝ to be positive. It is assumed that Â and B̂ intersect, so
there exists at least one crossing between them. We now have an induced spatial
embedding f̃ in which lk( Ã, B̃) > 0.

The other implication is trivial to prove. �

Here, we provide a sufficient condition for a graph to be intrinsically linkable:
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Figure 1. Computing the linking number.

Lemma 2.2. A graph G is intrinsically linkable if it contains a nonplanar sub-
graph H such that for any pair {e1, e2} of nonadjacent edges in H , e1 and e2

belong to disjoint cycles in G.

Proof. Let G be any graph that satisfies the above condition and let f̂ be any
immersion of G. Since H is nonplanar, there exists in Ĥ at least one pair {e1, e2}

of nonadjacent edges that intersect. By hypothesis there are disjoint cycles, C1 and
C2, that contain e1 and e2 respectively. Since Ĉ1 and Ĉ2 intersect, by Lemma 2.1
f̂ is linkable. �

Remark (A remark on notation). We use the notation G − em,n to denote the
subgraph of G obtained by removing an edge connecting a vertex of degree m
to a vertex of degree n. This notation is used only when the edge classes of G
are uniquely determined by the degree of the incident vertices. If no subscript is
present on e, then all edges of G belong to the same class. (Recall that the degree
of a vertex is the number of edges incident to that vertex.)

We denote the graph in the Petersen family obtained from K6 by a single 1-
Y exchange by P7, and we denote the graph in the Petersen family obtained from
K3,3,1 by a single1-Y exchange by P8. Finally, we denote the graph in the Petersen
family obtained from P8 by a single 1-Y exchange by P9. (Recall that K3,3,1 is
the graph of 7 vertices with vertices in three classes: {v1, v2, v3}, {v4, v5, v6} and
{v7} and edges between two vertices if and only if they lie in different classes. The
graph K4,4 is defined similarly on 8 vertices with two vertex classes of size 4.)

Theorem 2.3. The following graphs are intrinsically linkable: K6−e, K3,3,1−e4,6,
P7− e4,5, P7− e5,5, (K4,4− e)− e4,4, and P8− e4,5.

Proof. We will show that G = K3,3,1− e4,6 is intrinsically linkable. Proofs for the
remaining graphs are similar.

Label the vertices as in Figure 2. Notice that in this labeling scheme the vertex
classes are S = {s1}, U = {u1}, V = {v1, v2, v3}, and W = {w1, w2}. We say that
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Figure 2. Vertex classes of K3,3,1− e4,6 and the subgraph H .

an edge is in the class SV if it connects a vertex in S with a vertex in V . Naming
the other edge classes similarly, we have four edge classes in total: SV , SW , U V ,
and V W .

Take any immersion f̂ of G. Let H be the subgraph induced by

{u1, v1, v2, v3, w1, w2}.

Since H is isomorphic to K3,3, H is nonplanar and thus Ĥ has a pair of nonadjacent
intersecting edges. There are two cases.

Case 1: Suppose one edge belongs to U V and the other to V W . We may assume
the two edges to be (u1, v2) and (v1, w1). Then the disjoint cycles

(s1, v1, w1) and (u1, v2, w2, v3)

intersect in Ĝ.

Case 2: Suppose both edges belong to V W . We may assume the two edges to be
(v1, w1) and (v2, w2). Then the disjoint cycles

(s1, v1, w1) and (u1, v2, w2, v3)

intersect in Ĝ.

Thus in either case we have a pair of disjoint cycles that intersect in Ĝ. By Lemma
2.2, G is intrinsically linkable. �

Figure 3. An immersion of P8− e3,3 with only one crossing.
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Since vertex expansion, 1-Y exchange, and Y -1 exchange preserve intrinsic
linking [Nešetřil and Thomas 1985; Fellows and Langston 1988; Motwani et al.
1988; Robertson et al. 1995], it is natural to ask if these same graph operations
preserve intrinsic linkability. In general, this is not the case. For example, P8−e4,4

can be obtained from P7− e4,5 by 1-Y exchange, but P8− e4,4 is not intrinsically
linkable (See Figure 3).

In addition, certain expansions of K6−e and K3,3,1−e4,6, which are exhibited in
Figure 4 (notice that the expanded immersions contain only one crossing), are not
intrinsically linkable. Any intrinsically linkable graph for which vertex expansion
does preserve linkability, we call strongly linkable. Having found many examples
in which expansion kills intrinsic linkability, we conjecture the following:

Conjecture 2.4. A graph is strongly linkable if and only if it is intrinsically linked.

Figure 4. Two graphs for which vertex expansion destroys intrin-
sic linkability.
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Figure 5. The neighborhoods involved in Lemma 3.1.

3. Intrinsically knottable graphs

3A. Introduction. The following lemma about knots is from [Kauffman 1983].
Note that we use lk2(L1, L2) to denote the mod 2 linking number for link compo-
nents L1 and L2. Recall that a knot is a tame embedding of S1 into R3.

Lemma 3.1. For a knot K , the Arf invariant α(K) is the second coefficient of the
Conway polynomial (mod 2). It satisfies the following Skein relation (see Figure 5):

α(K+)= α(K−)+ lk2(L1, L2).

Note that if α(K ) 6= 0, then K is nontrivial. (There are, however, many nontrivial
knots with vanishing Arf invariant).

We use the following lemma from [Taniyama and Yasuhara 2001] (see also
[Foisy 2002]). This lemma uses the second coefficient of the Conway polynomial
of a knot, which is denoted by a2(K ), for a knot K (again, if a2(K ) 6= 0, then K
is nontrivial). Recall that a Hamiltonian cycle in a graph is a cycle that uses every
vertex of the graph.

Figure 6. A planar embedding of D4.
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Lemma 3.2. Consider the graph D4, labeled as in Figure 6. Let f be a function
embedding D4 in space. Let S0 and S1 be sets of Hamiltonian cycles where

S0 = { (ai b j ckdl) | i + j + k+ l is even },

S1 = { (ai b j ckdl) | i + j + k+ l is odd }.

Let
λ( f )=

∑
C∈S0

a2( f (C))−
∑
C∈S1

a2( f (C)).

Then
λ( f )=

∣∣ lk(C1,C3) · lk(C2,C4)
∣∣.

In particular, if λ( f ) is nonzero, one of the Hamiltonian cycles must be knotted.

The following corollary is an immediate consequence; see [Taniyama and Ya-
suhara 2001; Foisy 2002].

Corollary 3.3. If for a given embedding of G, there is an expansion of D4 con-
tained as an embedded subgraph with

lk(C1,C3) · lk(C2,C4) > 0,

then the embedded G contains a knotted cycle.

3B. Nontrivial examples of intrinsically knottable graphs. We explore the con-
nection between intrinsic linking and intrinsic knottability by looking at the Pe-
tersen graphs. We originally conjectured that an intrinsically linked graph would
necessarily be intrinsically knottable, but we quickly found counterexamples. It
is easy to see that an immersion must have at least three crossings in order to be
knottable. There are immersions of P9, PG, and P8 that have only two crossings
(see, for example Figure 7), so clearly these graphs are not intrinsically knottable.

Theorem 3.4. The graph K6 is intrinsically knottable.

Our proof of this theorem relies heavily on the following lemma which is similar
to Lemma 3.2.

Lemma 3.5. Let D′4 be a graph with four vertices, two nonadjacent 2-cycles C1

and C2, and two nonadjacent edges A1 and A2 that connect C1 and C2 (see Figure
8). Given any immersion of D′4, if C1 and C2 cross and A1 and A2 cross, then the
immersion is knottable.

Proof. Take any immersion of D′4 such that C1 and C2 cross and A1 and A2 are
crossed. Assign over/under information to the crossings of C1 and C2 such that
lk2(C1,C2)= 1. We will show that there is a way to assign over/under information
to the crossings on A1 and A2 such that the resulting embedding contains a knot.
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Figure 7. An immersion of the classic Petersen graph with only
two crossings.

Let S be the set of all Hamiltonian cycles of D′4. Given any embedding of D′4,
we can define σ as follows:

σ =
∑
C∈S

α(C).

For disjoint arcs a1 and a2 in an embedding of D′4, define ω(a1, a2) ∈ Z2 to be
the number of times mod 2 that a1 crosses over a2. Note that by definition, for any
embedding of D′4,

ω(e1, e3)+ω(e1, e4)+ω(e2, e3)+ω(e2, e4)= lk2(C1,C2).

Assign arbitrarily all crossings of A1 with A2 but one. Consider the crossing that
has not been assigned. Let D+ denote the embedding of D′4 in which A1 crosses
over A2 at that crossing and D− denote the embedding of D′4 in which A2 crosses
over A1. Consider the change 1σ in σ that will result from changing the crossing
on A1 and A2.

Figure 8. The graph D′4.
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Let C be a Hamiltonian cycle containing A1 and A2 and ε(C) be the change in
α(C) induced by the crossing change. Now by Lemma 3.1 above,

ε(C)= α(C+)+α(C−)= lk2(L1, L2)=
∑

E1∈L1,E2∈L2

ω(E1, E2).

Now, summing up ε(C) over all Hamiltonian cycles C gives the change in σ .
Fortunately most of the terms cancel out and we are left with

1σ =
∑
C∈S

ε(C)

= ω(e1, e3)+ω(e1, e4)+ω(e2, e3)+ω(e2, e4)

= lk2(C1,C2)= 1.

This means that either D+ or D− contains a knot. �

Proof of Theorem 3.4. Take any lift of any immersion of K6. Since K6 is in-
trinsically linked, there is a pair of linked triangles, C1 and C2, in the resulting
embedding.

Suppose that we temporarily ignore the edges of C1 and C2. We are left with
K3,3, which has a crossing in nonadjacent edges, say A1 and A2. Notice that A1 and
A2 connect the cycles C1 and C2. The cycles C1 and C2, along with the edges A1

and A2, make up a subgraph of K6 that is D′4 (with some extra degree 2 vertices).
Since C1 and C2 are linkable and A1 and A2 cross, this subgraph immersion is
knottable, by Lemma 3.5. Thus K6 is knottable. �

Now we show that K4,4− e is intrinsically knottable. First we need the following
lemma.

Lemma 3.6. Suppose G is a graph that contains in every immersion two pairs
of linkable cycles, C1 and C2, C3 and C4. Suppose the union of the cycles is an
expansion of D4 with C1 and C2 opposite each other and C3 and C4 opposite each
other (so C1 and C2 are disjoint, C3 and C4 are disjoint, and all other pairs of Ci

and C j , for i 6= j , intersect in either a vertex, an edge, or a simple path). If there
is a way to orient the cycles consistently, then G is intrinsically knottable.

Proof. Orient the cycles in a consistent way, and assign all crossings to be positive.
Then lk(C1,C2) and lk(C3,C4) are both positive. Since the cycles C1, C2, C3,
and C4 form a subgraph of G that is an expansion of D4 with the desired linking
properties, we can apply Corollary 3.3 and conclude that the resulting embedding
contains a knot. �

Theorem 3.7. The graph K4,4− e is intrinsically knottable.
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Figure 9. Case 1 (left): C3 shares exactly one edge with C1 and
one edge with C2. Case 2 (right): C3 shares exactly one edge with
C1 and one edge with C2.

Proof. We first label the vertices of K4,4−e as v1, . . . , v4, w1, . . . , w4, where every
vi belongs to one partition and every wi belongs to the other partition. Let (v1, w3)

be the missing edge.
Take any lift of any immersion of K4,4−e. Since K4,4−e is intrinsically linked,

there is a pair of nonsplittably linked (thus linkable) 4-cycles in the lift embedding.
We again denote these 4-cycles as C1 and C2 where C1 is (v1, w1, v2, w2) and C2

is (v3, w3, v4, w4). (Up to symmetry this is the only way to get disjoint 4-cycles.)
Now the subgraph of K4,4−e resulting from the removal of (v1, w1) is intrinsi-

cally linkable by Theorem 2.3 above. So there is a pair of linkable cycles, C3 and
C4 in the subgraph. There are two ways in which C3 and C4 can be related to C1

and C2: C3 shares exactly one edge with C1 and one edge with C2, or C3 shares
exactly one edge with C1 and one edge with C2.

In each case, there is a way to orient the cycles C1, C2, C3, and C4 consistently.
(See Figure 9.) Since the cycles C1, C2, C3, and C4 form a subgraph of K4,4− e
that is an expansion of D4 with the desired linkability properties, we can apply
Lemma 3.6 and conclude that K4,4− e is intrinsically knottable. �

The techniques of this proof can also be applied to prove that K6, P7 and K3,3,1

are intrinsically knottable.

3C. Strongly knottable graphs. We say that a graph G is strongly knottable if
every expansion of G is intrinsically knottable.

Proposition 3.8. The graphs K6, K3,3,1, K4,4, and P7 are not strongly knottable.

Proof. In Figures 10 and 11, we exhibit immersions of expansions of K6 and
K4,4, such that each immersion has only two crossings, and thus certainly is not
knottable. Similar immersions for P7 and K3,3,1 exist. �

This leads us to the following conjecture.
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Figure 10. An immersion of an expansion of K6 with only two crossings.

Figure 11. An immersion of an expansion of K4,4 with only two crossings.

Conjecture 3.9. A graph is strongly knottable if and only if it is intrinsically knot-
ted.
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