
Illinois Journal of Mathematics
Volume 56, Number 3, Fall 2012, Pages 805–823
S 0019-2082

AN EXACT FORMULA RELATING LATTICE POINTS IN
SYMMETRIC SPACES TO THE AUTOMORPHIC SPECTRUM

AMY T. DECELLES

Abstract. We extract an exact formula relating the number of
lattice points in an expanding region of a complex semi-simple

symmetric space and the automorphic spectrum from a spectral

identity, which is obtained by producing two expressions for the

automorphic fundamental solution of the invariant differential

operator (Δ − λz)
ν . On one hand, we form a Poincaré series

from the solution to the corresponding differential equation on the

free space G/K, which is obtained using the harmonic analysis

of bi-K-invariant functions. On the other hand, a suitable global

automorphic Sobolev theory, developed in this paper, enables us

to use the harmonic analysis of automorphic forms to produce a
solution in terms of the automorphic spectrum.

1. Introduction

The simplest lattice-point counting problem is the Gauss circle problem,
counting lattice points within a circle in the Euclidean plane. Elementary
packing arguments yield

(1.1) N(T ) =#
{
ξ ∈ Z

2 : |ξ| ≤ T
}
= π · T 2 +O(T ).

Determining the optimal error term, conjectured to be O(T 1/2+ε), is a topic
of active research [14], [15]. In the hyperbolic plane, where the circumference
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of a circle is proportionate to its area, packing arguments fail to produce an
asymptotic with error term. Subtler methods have produced asymptotics for
lattice-point counting in hyperbolic spaces; see [2], [18], [20]. In affine sym-
metric spaces, ergodic methods have produced asymptotics for lattice point
counting, e.g. [1], [5], [6], [17]. Gorodnik and Nevo [13] give a good exposition
of ergodic methods and lattice-point counting.

In contrast, spectral methods produce an exact formula relating the num-
ber of lattice points in an expanding region and the automorphic spectrum.
Instead of expressing something mysterious in terms of something familiar,
this formula, like the explicit formula of Riemann-von Mangoldt, which re-
lates the prime numbers to the zeros of zeta, gives a relationship between
two mysterious things; its appeal lies not in its utility for evaluation of one
side, but rather in that it reveals a connection between seemingly disparate
things.

Instead of using trace formula methods, we obtain a spectral identity from
a differential equation on the arithmetic quotient X = Γ\G/K. This of-
fers the possibility of operating under somewhat different hypotheses than
one would usually take when using trace formula or relative trace formula
methods: while trace formulas work best with very smooth data, the appli-
cations to asymptotics of L-functions that we have in mind (see [3]) use a
Poincaré series whose data is not smooth nor compactly supported. On the
other hand, our approach necessitates a more careful treatment of analytic
issues.

We obtain a spectral identity by producing two different expressions for
the solution of the following differential equation on the arithmetic quotient
X =Γ\G/K:

(1.2) (Δ− λz)
νvz = δxo ,

where the Laplacian Δ is the image of the Casimir operator for g, λz a complex
parameter, ν an integer, and δxo = δΓ·1·K the Dirac delta distribution at the
basepoint in Γ\G/K. On one hand, we form a Poincaré series from the
solution to the corresponding differential equation on the free space G/K,
obtained using the analysis of bi-K-invariant functions [3]. On the other
hand, a global automorphic Sobolev theory produces a solution in terms of
the automorphic spectrum. For a sketch of this discussion for SL2(C)/SU(2),
see [9].

2. Global automorphic Sobolev theory

2.1. Parametrization of spectrum, spectral transform and inversion.
The spectral theory of automorphic forms decomposes square integrable au-
tomorphic forms in terms of eigenfunctions. For succinctness, we restrict our
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attention to automorphic forms that are spherical at infinity and have trivial
central character. Though the automorphic spectrum consists of disparate
pieces (cusp forms, Eisenstein series, residues of Eisenstein series) it will be
useful to have a uniform notation. We posit a parameter space Ξ with spec-
tral (Plancherel) measure dξ and let Φξ denote the elements of the spectrum.
The general spectral theory (see, for example, [16], [19]) implies the follow-
ing.

For test functions f on Gk\GA, the spectral transform F : C∞
c (Gk\GA)→

C0(Ξ) by f → 〈f,Φξ〉, where 〈·, ·〉 is the usual L2 inner product, extends to
an isometry

(2.1) F : L2(ZAGk\GA/K∞)
∼−→ L2(Ξ).

On compactly supported continuous functions, the inverse map is given by an
integral formula, and there is an inversion formula

(2.2) f
L2

=

∫
Ξ

Ff(ξ)Φξ dξ

converging at least for test functions on ZAGk\GA.
Since the critical issues for applications arise at the archimedean place, we

will consider global archimedean spherical automorphic Sobolev spaces. For
a discussion of global automorphic Sobolev spaces for SL2(C), see [10].

2.2. Characterizations of Sobolev spaces. Let G be a semi-simple or
reductive Lie group with discrete subgroup Γ and maximal compact subgroup
K, and let X be the arithmetic quotient Γ\G/K. We define positive index
global archimedean spherical automorphic Sobolev spaces as rightK-invariant
subspaces of completions of C∞

c (Γ\G) with respect to a topology induced by
seminorms associated to derivatives from the universal enveloping algebra,
as follows. Let Ug≤� denote the finite dimensional subspace of the universal
enveloping algebra Ug consisting of elements of degree less than or equal to �.
Each α ∈ Ug gives a seminorm να(f) = ‖αf‖2L2(Γ\G) on C∞

c (Γ\G).

Definition 2.1. Consider the space of smooth functions bounded with
respect to these seminorms:

(2.3)
{
f ∈C∞(Γ\G) : ναf <∞ for all α ∈ Ug≤�

}
.

Let H�(Γ\G) be the completion of this space with respect to the topology
induced by the family {να : α ∈ Ug≤�}. The global archimedean spherical
automorphic Sobolev space H�(X) =H�(Γ\G)K is the subspace of right-K-
invariant functions in H�(Γ\G).

Proposition 2.1. The space of test functions C∞
c (X) is dense in H�(X).
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Proof. We approximate a smooth function f ∈H�(X) by pointwise prod-
ucts with smooth cut-off functions, as follows. Let {ηn} ⊂ C∞

c (Γ\G) be a
family of left N -invariant, right K-invariant smooth cut-off functions with
supg∈Γ\G |αηn(g)| 
 1 for all α ∈ Ug≤�, where the implied constant does not

depend on the support of η, but may depend on �. By definition, νγ(ηn · f −
f) = ‖γ(ηn · f − f)‖2L2(Γ\G). Leibnitz’ rule implies that γ(ηn · f − f) is a finite

linear combination of terms of the form α(ηn − 1) · βf where α, β ∈ Ug≤�.
When deg(α) = 0, ‖α(ηn − 1) · βf‖2L2(Γ\G) is estimated by the integral of

|βf |2 outside of the region on which ηn ≡ 1. Otherwise, α(ηn − 1) = αηn, and
‖α(ηn−1) ·βf‖2L2(Γ\G) is estimated by the integral of |βf |2 outside the support
of ηn. All of these integrals approach zero as n→∞, since f ∈H�(X). Since
there are only finitely many β that appear as a result of applying Leibnitz
rule, νγ(ηn · f − f) also approaches zero as n→∞. �

Proposition 2.2. Let Ω be the Casimir operator in the center of Ug. The
norm ‖·‖2� on C∞

c (Γ\G)K given by

(2.4) ‖f‖22� = ‖f‖2 +
∥∥(1−Ω)f

∥∥2 + ∥∥(1−Ω)2f
∥∥2 + · · ·+

∥∥(1−Ω)�f
∥∥2,

where ‖·‖ is the usual norm on L2(Γ\G), induces a topology on C∞
c (Γ\G)K

that is equivalent to the topology induced by the family {να : α ∈ Ug≤2�} of
seminorms and with respect to which H2�(X) is a Hilbert space.

Proof. Let g = p + k be the Cartan decomposition of g, and let {Xi} be
a basis for g. Then Ω =

∑
iXiX

∗
i . Let Ωp and Ωk denote the subsums

corresponding to the subspaces p and k respectively. The set Σ of possible
K-types of γf , for γ ∈ Ug≤�, is finite. Let λσ denote the Ωk-eigenvalue of a
function of K-type σ, and let C be a number greater than the maximum value
of {λσ : σ ∈ Σ}. By the Poincaré–Birkhoff–Witt theorem, we may assume α
is a monomial of the form α= x1 · · ·xny1 · · ·ym where xi ∈ p and yi ∈ k. For
f ∈C∞

c (Γ\G)K ,

(2.5) ναf = 〈αf,αf〉L2(Γ\G) = 〈x1 · · ·xnf,x1 · · ·xnf〉L2(Γ\G) (xi ∈ p).

Lemma 2.1. For ϕ ∈ C∞
c (Γ\G) and α= x1 · · ·xn a monomial in Ug with

xi ∈ p,

(2.6) 〈αϕ,αϕ〉 ≤
〈
(−Ω+C)nϕ,ϕ

〉
,

where 〈·, ·〉 is the usual inner product on L2(Γ\G).

Proof. We proceed by induction on n = degα. For n = 1, α = x ∈ p. Let
{Xi} be self-dual basis for p such that X1 = x. Then,

〈xϕ,xϕ〉 ≤
∑
i

〈Xiϕ,Xiϕ〉=−
∑
i

〈
X2

i ϕ,ϕ
〉

(2.7)

= 〈−Ωpϕ,ϕ〉=
〈
(−Ω+Ωk)ϕ,ϕ

〉
≤
〈
(−Ω+C)ϕ,ϕ

〉
.
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For n > 1, write α= xγ, where x= x1 and γ = x2 · · ·xn. Then, by the above
argument, 〈xγϕ,xγϕ〉 ≤ 〈(−Ω + C)γϕ,γϕ〉. Since the operator −Ω + C is
a strictly positive symmetric unbounded operator, there is an everywhere
defined inverse R, by Friedrichs [7], [8], which is a positive symmetric bounded
operator, and which, by the spectral theory for bounded symmetric operators,
has a positive symmetric square root

√
R in the closure of the polynomial

algebra C[R]. Thus −Ω + C has a symmetric positive square root, namely

(1−
√
R), commuting with all elements of Ug. Thus,

(2.8)
〈
(−Ω+C)γϕ,γϕ

〉
= 〈γ

√
−Ω+Cϕ,γ

√
−Ω+Cϕ〉.

By inductive hypothesis,

〈γ
√
−Ω+Cϕ,γ

√
−Ω+Cϕ〉(2.9)

≤
〈
(−Ω+C)n−1

√
−Ω+Cϕ,

√
−Ω+Cϕ

〉
=
〈
(−Ω+C)nϕ,ϕ

〉
.

This completes the proof of the lemma.

Thus, for any α ∈ Ug, there is a constant C, possibly depending on the
degree of α, such that να(f) 
 〈(−Ω + C)degαf, f〉 for all f ∈ C∞

c (Γ\G)K .
In fact, for right K-invariant functions, (−Ω + C)degαf = (−Ωp + C)degαf .
Since Ωp is positive semi-definite, multiplying by a positive constant does
not change the topology. Thus, we may take C = 1. That is, the subfamily
{να : α= (1−Ω)k, k ≤ �} of seminorms on C∞

c (Γ\G)K dominates the family
{να : α ∈ Ug≤2�} and thus induces an equivalent topology. �

It will be necessary to have another description of Sobolev spaces. Let

(2.10) W 2,�(Γ\G) =
{
f ∈ L2(Γ\G) : αf ∈ L2(Γ\G) for all α ∈ Ug≤�

}
,

where the action of Ug on L2(Γ\G) is by distributional differentiation. Give
W 2,�(Γ\G) the topology induced by the seminorms ναf = ‖αf‖2L2(Γ\G), α ∈
Ug≤�, and let W 2,�(X) be the subspace of right K-invariants.

Proposition 2.3. These spaces are equal to the corresponding Sobolev
spaces:

(2.11) W 2,�(Γ\G) =H�(Γ\G) and W 2,�(X) =H�(X).

Proof. It suffices to show the density of test functions in W 2,�(Γ\G). Since
G acts continuously on W 2,�(Γ\G) by right translation, mollifications are
dense in W 2,�(Γ\G); see Section 2.5. By Urysohn’s Lemma, it suffices to
consider mollifications of continuous, compactly supported functions. Let
η ∈ C∞

c (G) and f ∈ C0
c (Γ\G). Then η · f is a smooth vector, and for all
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α ∈ Ug, α · (η · f) = (Lαη) · f . For X ∈ g, the action on η · f as a vector
is

∂

∂t

∣∣∣∣
t=0

etX · (η · f) = ∂

∂t

∣∣∣∣
t=0

etX ·
∫
G

η(g)g · f dg(2.12)

=
∂

∂t

∣∣∣∣
t=0

∫
G

η(g)
(
getX

)
· f dg.

Now using the fact that f is a function and the group action on f is by
translation,

(2.13)
(
X · (η · f)

)
(h) =

∂

∂t

∣∣∣∣
t=0

∫
G

η(g)f
(
hetXg

)
dg =

∂

∂t

∣∣∣∣
t=0

(η · f)
(
hetX

)
.

Thus the smoothness of η · f as a vector implies that it is a genuine smooth
function. The support of η · f is contained in the product of the compact
supports of η and f . Since the product of two compact sets is again compact,
η · f is compactly supported. �

Remark 2.1. By Proposition 2.2, H2�(X) =W 2,2�(X) is a Hilbert space
with norm

(2.14) ‖f‖22� = ‖f‖2 +
∥∥(1−Ω)f

∥∥2 + · · ·+
∥∥(1−Ω)�f

∥∥2,
where ‖·‖ is the usual norm on L2(Γ\G), and (1 − Ω)kf is a distributional
derivative.

2.3. Spectral transform, inversion, and differentiation on Sobolev
spaces.

Proposition 2.4. For �≥ 0, the Laplacian extends to a continuous linear
map from H2�+2(X) to H2�(X); the spectral transform extends to a map on
H2�(X); and for every f ∈H2�+2(X), F((1−Δ)f) = (1− λξ) · F .

Proof. By the construction of the Sobolev topology, the Laplacian is a con-
tinuous linear map from C∞(Γ\G) ∩H2�+2(Γ\G) to C∞(Γ\G) ∩H2�(Γ\G).
Since the Laplacian preserves right-K-invariance, it extends to a continuous
linear map, also denoted Δ, from H2�+2(X) to H2�(X). The spectral trans-
form, defined on C∞

c (Γ\G)K by the integral transform, extends by continuity
to H2�(X). This extension agrees with the extension to L2(X) coming from
Plancherel. By integration by parts, F(Δϕ) = λξ · Fϕ, for ϕ ∈ C∞

c (Γ\G)K ,
so by continuity, F((1−Δ)f) = (1− λξ) · Ff for all f ∈H2�+2(X). �

Let μ be the multiplication map μ(v)(ξ) = (1−λξ) ·v(ξ) on functions on Ξ.
For � ∈ Z, the weighted L2-spaces V 2� = {v measurable : μ�(v) ∈ L2(Ξ)} with
norms

(2.15) ‖v‖2V 2� =
∥∥μ�(v)

∥∥2
L2(Ξ)

=

∫
Ξ

(1− λξ)
2�
∣∣v(ξ)∣∣2 dξ
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are Hilbert spaces with V 2�+2 ⊂ V 2� for all �. In fact, these are dense inclu-
sions, since truncations are dense in all V 2�-spaces. The multiplication map
μ is a Hilbert space isomorphism μ : V 2�+2 → V 2� since for v ∈ V 2�+2,

(2.16)
∥∥μ(v)∥∥

V 2� =
∥∥μ�+1(v)

∥∥
L2(Ξ)

= ‖v‖V 2�+2 .

The negatively indexed spaces are the Hilbert space duals of their positively
indexed counterparts, by integration. The adjoints to inclusion maps are
genuine inclusions, since V 2�+2 ↪→ V 2� is dense for all �≥ 0, and the adjoint
map μ∗ : (V 2�)∗ → (V 2�+2)∗ is the multiplication map μ : V −2� → V −2�−2.

Proposition 2.5. For � ≥ 0, the spectral transform F is an isometric
isomorphism H2�(X)→ V 2�.

Proof. On compactly supported functions, the spectral transform F and its
inverse F−1 are given by integrals, which are certainly continuous linear maps.
The Plancherel theorem extends F and F−1 to isometries between L2(X) and
L2(Ξ). Thus, F on H2�(X) is a continuous linear L2-isometry onto its image.
Let f ∈H2�(X). By Proposition 2.3, the distributional derivatives (1−Δ)kf
lie in L2(X) for all k ≤ �. By the Plancherel theorem and Proposition 2.4,

(2.17)
∥∥(1−Δ)�f

∥∥
L2(X)

=
∥∥F(

(1−Δ)�f
)∥∥

L2(Ξ)
=
∥∥(1− λξ)

� · Ff
∥∥
L2(Ξ)

.

Thus, F(H2�(X)) ⊂ V 2�. The following claim shows that F−1(V 2�) ⊂
H2�(X), completing the proof of the proposition.

Claim. For v ∈ V 2�, the distributional derivatives (1 − Δ)kF−1v lie in
L2(X), for all 0≤ k ≤ �.

Proof. For test function ϕ, the Plancherel theorem implies

(2.18)
(
(1−Δ)F−1v

)
ϕ=F−1v

(
(1−Δ)ϕ

)
= v

(
F(1−Δ)ϕ

)
.

By Proposition 2.4 and the Plancherel theorem,

v
(
F(1−Δ)ϕ

)
= v

(
(1− λξ) · Fϕ

)
(2.19)

=
(
(1− λξ) · v

)
(Fϕ) =F−1

(
(1− λξ) · v

)
ϕ.

By induction, we have the following identity of distributions: (1−Δ)kF−1v =
F−1((1− λξ)

kv). Since F is an L2-isometry and (1− λξ)
kv ∈ L2(Ξ) for all

0≤ k ≤ �, (1−Δ)kF−1v lies in L2(X) for 0≤ k ≤ �. �

Remark 2.2. This Hilbert space isomorphism F : H2�(X)→ V 2� gives a
spectral characterization of the 2� th Sobolev space, namely the preimage of
V 2� under F .

(2.20) H2�(X) =
{
f ∈ L2(X) : (1− λξ)

� · Ff(ξ) ∈ L2(Ξ)
}
.
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2.4. Negatively indexed Sobolev spaces and distributions. The the-
ory of negatively indexed Sobolev spaces allows the use of spectral theory for
solving differential equations involving certain distributions.

Definition 2.2. For � > 0, the Sobolev space H−�(X) is the Hilbert space
dual of H�(X).

Remark 2.3. Since the space of test functions is a dense subspace ofH�(X)
with � > 0, dualizing gives an inclusion of H−�(X) into the space of distribu-
tions. Similarly, the adjoints of the dense inclusions H� ↪→H�−1 are literal
inclusions H−�+1(X) ↪→H−�(X). The self-duality of H0(X) = L2(X) implies
that H�(X) ↪→H�−1 for all � ∈ Z.

Proposition 2.6. The spectral transform extends to an isometric isomor-
phism on negatively indexed Sobolev spaces F : H−2� → V −2�, and F((1 −
Δ)u) = (1− λξ) · Fu for any u ∈H2�(X), � ∈ Z.

Proof. To simplify notation, for this proof let H2� =H2�(X). Propositions
2.4 and 2.5 give the result for positively indexed Sobolev spaces, expressed in
the following commutative diagram,

(2.21) . . .
(1−Δ)

H4
(1−Δ)

F ≈

H2
(1−Δ)

F ≈

H0

F ≈

. . .
μ

V 4 μ
V 2 μ

V 0

where μ(v)(ξ) = (1−λξ) · v(ξ), as above. Dualizing, we immediately have the
commutativity of the adjoint diagram.

(2.22) (H0)∗
(1−Δ)∗

(H2)∗
(1−Δ)∗

(H4)∗
(1−Δ)∗

. . .

(V 0)∗
μ∗

≈F∗

(V −2)∗
μ∗

≈F∗

(V −4)∗
μ∗

≈F∗

. . .

The self-duality of L2 and the Plancherel theorem allow the two diagrams to
be connected.

(2.23) . . .
(1−Δ)

H4
(1−Δ)

F ≈

H2
(1−Δ)

F ≈

H0

F ≈

(1−Δ)∗

H−2
(1−Δ)∗

H−4
(1−Δ)∗

. . .

. . .
μ

V 4 μ
V 2 μ

V 0 μ

≈ F−1

V 2 μ

≈F∗

V 4 μ

≈F∗

. . .
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Since V 2�+2 is dense in V 2� for all � ∈ Z, and H2� ≈ V 2� for all � ∈ Z, H2�+2

is dense in H2� for all � ∈ Z. Thus, test functions are dense in all the Sobolev
spaces. The adjoint map (1−Δ)∗ : H−2� →H−2�−2 is the continuous exten-
sion of (1−Δ) from the space of test functions, since, for a test function ϕ,
identified with an element of H−2� by integration,(

(1−Δ)∗Λϕ

)
(f) = Λϕ

(
(1−Δ)f

)
=
〈
ϕ, (1−Δ)f

〉
(2.24)

=
〈
(1−Δ)ϕ,f

〉
=Λ(1−Δ)ϕ(f)

for all f in H2�+2 by integration by parts, where Λϕ is the distribution as-
sociated with ϕ by integration and 〈·, ·〉 denotes the usual inner product on
L2(X). The map (F∗)−1 on H−2� is the continuous extension of F from the
space of test functions, since for a test function ϕ,

(2.25)
(
F∗ΛFϕ

)
(f) = ΛFϕ(Ff) = 〈Fϕ,Ff〉V 2� = 〈ϕ,f〉H2� =Λϕ(f)

for all f ∈H2�. Thus, the following diagram commutes.

(2.26) . . .
(1−Δ)

H4
(1−Δ)

F ≈

H2
(1−Δ)

F ≈

H0

F ≈

(1−Δ)
H−2

(1−Δ)

F ≈

H−4
(1−Δ)

F ≈

. . .

. . .
μ

V 4 μ
V 2 μ

V 0 μ
V −2 μ

V −4 μ
. . .

In other words, the relation F((1−Δ)u) = (1− λξ) · Fu holds for any u in a
Sobolev space. �

Definition 2.3. For a smooth manifold M , the positively indexed local
Sobolev spaces H�

loc(M) consist of functions f on M such that for all points
x ∈ M , all open neighborhoods U of x small enough that there is a diffeo-
morphism Φ : U → R

n with Ω = Φ(U) having compact closure, and all test
functions ϕ with support in U , the function (f · ϕ) ◦Φ−1 : Ω−→ C is in the
Euclidean Sobolev space H�(Ω).

Recall the Sobolev embedding theorem for local Sobolev spaces. For a
smooth manifold M , H�+k

loc (M)⊂Ck(M) for � > dim(M)/2.

Proposition 2.7. For � > dim(G/K)/2, H�+k(X)⊂Ck(G/K).

Proof. Since positively indexed global Sobolev spaces H�(X) lie inside
the corresponding local Sobolev spaces, H�(X) ⊂ H�

loc(G/K), and by local
Sobolev embedding, H�

loc(G/K)⊂Ck(G/K). �

This embedding of global Sobolev spaces into Ck-spaces is used to prove
that the integral defining spectral inversion for test functions can be extended
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to sufficiently highly indexed Sobolev spaces, that is, the abstract isomet-
ric isomorphism F−1 ◦ F : H�(X) → H�(X) is given by an integral that is
convergent uniformly pointwise, when � > dim(G/K)/2, as follows.

Proposition 2.8. For f ∈Hs(X) , s > k+dim(G/K)/2,

(2.27) f =

∫
Ξ

Ff(ξ)Φξ dξ in Hs(X) and Ck(X).

Proof. Let {Ξn} be a nested family of compact sets in Ξ whose union is
all of Ξ, χn be the characteristic function of Ξn, and fn be given by the
C∞(X)-valued Gelfand–Pettis integral (see Section 2.5)

(2.28) fn =

∫
Ξ

χn(ξ)Ff(ξ)Φξ dξ.

Since χn(ξ)Ff(ξ) is compactly supported, fn = F−1(χn · Ff). Thus, by
Proposition 2.5,

(2.29) ‖fn − fm‖Hs(X) =
∥∥(χn − χm) · Ff

∥∥
V s .

Since Ff lies in V s, these tails certainly approach zero as n,m→∞. Similarly,

(2.30) ‖fn − f‖Hs(X) =
∥∥(χn − 1) · Ff

∥∥
V s −→ 0 as n→∞.

By Proposition 2.7, fn approaches f in Ck(X). �

The embedding of global Sobolev spaces into Ck-spaces also implies that
compactly supported distributions lie in global Sobolev spaces, as follows.

Proposition 2.9. Any compactly supported distribution on X lies in a
global Archimedian spherical automorphic Sobolev space. Specifically, a com-
pactly supported distribution of order k lies in H−s(X) for all s > k+dim(G/
K)/2.

Proof. A compactly supported distribution u lies in (C∞(G/K))∗. Since
compactly supported distributions are of finite order, u extends continuously
to Ck(G/K) for some k ≥ 0. Using Proposition 2.7 and dualizing, u lies in
H−(�+k)(X), for � > dim(G/K)/2. �

Remark 2.4. In particular, this implies that the Dirac delta distribution at
the base point xo =Γ ·1 ·K in Γ\G/K lies in H−�(X) for all � > dim(G/K)/2.

Proposition 2.10. For a compactly supported distribution u of order k,

(2.31) Fu= u(Φξ) in V −s where s > k+dim(G/K)/2.

Proof. A compactly supported distribution u of order k lies in H−s for any
s > k+dim(G/K)/2. Let f be any element in Hs(X). Then,

(2.32) 〈Ff,Fu〉V s×V −s = 〈f,u〉Hs×H−s = u(f).
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Since the spectral expansion of f converges to it in the Hs(X) topology by
Proposition 2.8,

(2.33) u(f) = u

(
lim
n

∫
Ξn

Ff(ξ)Φξ dξ

)
= lim

n
u

(∫
Ξn

Ff(ξ)Φξ dξ

)
.

Since the integral is a C∞(X)-valued Gelfand–Pettis integral (see 2.5) and u
is an element of (C∞(X))∗,

(2.34) u

(∫
Ξn

Ff(ξ)Φξ dξ

)
=

∫
Ξn

Ff(ξ)u(Φξ)dξ.

The limit as n→∞ is finite, by comparison with the original expression which
surely is finite, and thus

(2.35) 〈Ff,Fu〉V s×V −s =

∫
Ξ

Ff(ξ)u(Φξ)dξ =
〈
Ff,u(Φξ)

〉
V s×V −s .

Thus, Fu= u(Φξ) as elements of V −s. �

Remark 2.5. This implies that the spectral transform of the Dirac delta
distribution is Fδ =Φξ(xo).

2.5. Gelfand–Pettis integrals and mollification. We describe the vector-
valued (weak) integrals of Gelfand [12] and Pettis [21] and summarize the key
results; see [11]. For X,μ a measure space and V a locally convex, quasi-
complete topological vector space, a Gelfand–Pettis (or weak) integral is a
vector-valued integral Co

c (X,V )→ V denoted f → If such that, for all α ∈ V ∗,

(2.36) α(If ) =

∫
X

α ◦ f dμ,

where this latter integral is the usual scalar-valued Lebesgue integral.

Remark 2.6. Hilbert, Banach, Frechet, LF spaces, and their weak duals
are locally convex, quasi-complete topological vector spaces; see [11].

Theorem 2.1. (i) Gelfand–Pettis integrals exist, are unique, and satisfy
the following estimate:

(2.37) If ∈ μ(sptf) ·
(
closure of compact hull of f(X)

)
.

(ii) Any continuous linear operator between locally convex, quasi-complete
topological vetor spaces T : V →W commutes with the Gelfand–Pettis integral:
T (If ) = ITf .

For a locally compact Hausdorff topological group G, with Haar measure
dg, acting continuously on a locally convex, quasi-complete vector space V ,
the group algebra Co

c (G) acts on V by averaging :

(2.38) η · v =
∫
G

η(g)g · v dg.
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Theorem 2.2. (i) Let G be a locally compact Hausdorff topological group
acting continuously on a locally convex, quasi-complete vector space V . Let
{ψi} be an approximate identity on G. Then, for any v ∈ V , ψi · v→ v in the
topology of V .

(ii) If G is a Lie group, the space V ∞ of smooth vectors is dense in V ,
since for a smooth approximate identity {ηi} on G, the mollifications ηi · v
are smooth. In particular, for X ∈ g, X · (η · v) = (LXη) · v.

Remark 2.7. For a function space V , the space of smooth vectors V ∞ is
not necessarily the subspace of smooth functions in V . Thus, Theorem 2.2
does not prove the density of smooth functions in V .

3. Lattice points and the automorphic spectrum:
An exact formula

Now we return to the problem posed at the beginning of the paper: ex-
pressing the relationship between the number of lattice points in an expanding
region in a symmetric space to the automorphic spectrum in an exact formula.

3.1. Gauges on groups and convergence of Poincaré series. We re-
call some general facts about gauges on groups and convergence of Poincaré
series. See [22] or Appendix 1 of [4]. For a countably-based, locally compact
Hausdorff, unimodular group G with compact subgroup K, a gauge g→‖g‖
is a continuous positive real-valued function on G such that:

(i) ‖e‖= 1, ‖g‖ ≥ 1, and ‖g−1‖= ‖g‖.
(ii) Submultiplicativity : ‖gh‖ ≤ ‖g‖ · ‖h‖.
(iii) K-invariance: ‖k · g‖= ‖g‖= ‖g · k‖.
(iv) Integrability : for some σo > 0,

(3.1)

∫
G

1

‖g‖σ dg <∞ (for σ > σo).

General reductive groups have gauges, and on GLn they admit a particu-
larly simple description, in terms of the operator norm:

(3.2) ‖g‖=max
(
|g|op,

∣∣g−1
∣∣
op

)
where |g|op = sup

|x|≤1

|g · x|.

Definition 3.1. If convergent, the Poincaré series associated to a function
f on G is

(3.3) Péf (g) =
∑
γ∈Γ

f(γ · g).

Proposition 3.1. (i) For a discrete subgroup Γ⊂G,

(3.4)
∑
γ∈Γ

1

‖γ‖σ <∞ (for σ > σo),

where σo is the power describing the integrability of the gauge.
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(ii) If there exists σ > σo, such that |f(g)| 
 ‖g‖−σ , then the Poincaré
series associated to f converges absolutely and uniformly on compact sets.
Moreover, |Péf (g)| 
 ‖g‖σ for all σ > σo.

(iii) If there exists σ > σo such that |f(g)| 
 ‖g‖−2σ , then the Poincaré
series associated to f is square integrable modulo Γ, that is,

(3.5)

∫
Γ\G

∣∣Péf (g)∣∣2 dg <∞.

3.2. Spectral identity: Expressions for the automorphic fundamen-
tal solution for (Δ−λz)

ν . Let G be a complex semi-simple Lie group with
finite center andK a maximal compact subgroup. Let G=NAK, g= n+a+k

be corresponding Iwasawa decompositions. Let Σ denote the set of roots of g
with respect to a, let Σ+ denote the subset of positive roots (for the ordering
corresponding to n), and let ρ= 1

2

∑
α∈Σ+ mαα, mα denoting the multiplicity

of α. Let a∗
C
denote the set of complex-valued linear functions on a. Let Γ be

a arithmetic subgroup. Let Φξ be a spectral basis for L2(Γ\G) in the sense
of Section 2.1. Consider the differential equation on the arithmetic quotient
X =Γ\G/K:

(3.6) (Δ− λz)
νvz = δxo ,

where the Laplacian Δ is the image of the Casimir operator for g, λz = z2−|ρ|2
for a complex parameter z, ν is an integral power, and δxo = δΓ·1·K is Dirac
delta at the basepoint in Γ\G/K.

Proposition 3.2. For integral ν > (dimX)/2, vz is a continuous right-K-
invariant function on Γ\G with the following integral representation:

(3.7) vz(g) =

∫
Ξ

Φξ(xo)

(λξ − λz)ν
Φξ(g)dξ.

Proof. Since δxo is a compactly supported distribution of order zero, by
Proposition 2.9, it lies in the global automorphic Sobolev spaces H−�(X) for
all � > (dimX)/2. Thus there is an element vz of H−�+2ν(X) satisfying this
equation. The solution vz is unique in Sobolev spaces, since any wz satisfying

(3.8) (Δ− λz)
νwz = δxo

must necessarily have the same spectral transform. For ν > (dimX)/2, by
Proposition 2.7, the solution is continuous, and by Proposition 2.8,

(3.9) vz(g) =

∫
Ξ

Fvz(ξ)Φξ(g)dξ =

∫
Ξ

Φξ(xo)

(λξ − λz)ν
Φξ(g)dξ. �

Let uz denote the solution to the differential equation on the free space
X =G/K:

(3.10) (Δ− λz)
νuz = δ1·K .
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This free space solution, described in the following theorem, is computed
explicitly in [3].

Theorem 3.1. When G is of odd rank and ν = (n+ 1)/2 + d, where d is
the number of positive roots, counted without multiplicities, and n is the rank,

(3.11) uz(a) =CG ·
∏

α∈Σ+

α(loga)

2 sinh(α(loga)2 )
· e

−z| loga|

z
,

where CG is an explicit constant depending on the group G. When G is of
even rank and ν = (n/2) + d+ 1,

(3.12) uz(a) =CG ·
∏

α∈Σ+

α(loga)

2 sinh(α(loga)2 )
· | loga|

z
·K1

(
z| loga|

)
,

where K1 is the usual Bessel function.

Proposition 3.3. For Re(z)� 1, the Poincaré series

(3.13) Péz(g) =
∑
γ∈Γ

uz(γ · g)

converges absolutely and uniformly on compacts to a continuous function on
Γ\G/K. Moreover, it is of moderate growth, and it is square-integrable mod-
ulo Γ.

Proof. By Proposition 3.1, it suffices to show that the free-space funda-
mental solution uz is of sufficient rapid decay. Let ‖·‖ be the gauge on G with
σo > 0 such that

(3.14)

∫
G

1

‖g‖σ dg <∞ (for σ > σo).

Note that the product over positive simple roots is bounded, so it suffices to
show that there is a σ > σo such that | loga| ·e−Re(z)| loga| 
‖a‖−σ . We claim
that | logA(a)| and log(‖a‖) are comparable. On diagonal matrices (ai), the
gauge is ‖(ai)‖=max1≤i≤n{ai, a−1

i }. Taking logarithms,

(3.15) log
(∥∥(ai)∥∥)= max

1≤i≤n

{
| logai|

} (
�∞-norm on a

)
.

On the other hand,

(3.16) | logA a|=
(

n∑
i=1

(logai)
2

)1/2 (
�2-norm on a

)
.

The usual comparison:

(3.17)
1√
n
· max
1≤i≤n

{
| logai|

}
≤
(

n∑
i=1

(logai)
2

)1/2

≤ max
1≤i≤n

{
| logai|

}
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allows us to conclude that uz is of sufficient rapid decay, as follows:

∣∣uz(a)
∣∣
 | loga| · e−Re(z)| loga| =

| loga|
(e| loga|)Re(z)

(3.18)


 log(‖a‖)
‖a‖Re(z)


 1

‖a‖Re(z)−1
.

�

Remark 3.1. For the case G= SL2(C),

(3.19) Péz(1) =
∑
γ∈Γ

rγe
−(2z−1)rγ

(2z − 1) sinh rγ
,

where rγ is the Cartan radius of γ. Thus e−(2z−1)rγ is the −(2z− 1)th power
of the length of the arc from the basepoint xo = 1 ·K to its image γ · xo. On
the quotient, this arc becomes a closed geodesic, and the sum over Γ is closely
related to the Selberg zeta function associated to Γ.

Theorem 3.2 (Spectral identity). For Re(z)� 1,

(3.20) Péz(g) =

∫
Ξ

Φξ(xo) ·Φξ(g)

(λξ − λz)ν
dξ (uniformly pointwise),

where uz is the free-space fundamental solution in Theorem 3.1. In particular,
when G is of odd rank,

∑
γ∈Γ

CG ·
∏

α∈Σ+

α(H(γ · g))
2 sinh(α(H(γ·g))

2 )
· e

−z|H(γ·g)|

z
(3.21)

=

∫
Ξ

Φξ(xo) ·Φξ(g)

(λξ − λz)ν
dξ

and when G is of even rank,∑
γ∈Γ

CG ·
∏

α∈Σ+

α(H(γ · g))
2 sinh(α(H(γ·g))

2 )
· |H(γ · g)|

z
·K1

(
z
∣∣H(γ · g)

∣∣)(3.22)

=

∫
Ξ

Φξ(xo) ·Φξ(g)

(λξ − λz)ν
dξ,

where H(g) is defined by g = k · exp(H(g)) · k′, for k, k′ ∈K.

Proof. By Proposition 3.3, the Poincaré series Péz is an automorphic funda-
mental solution for (Δ− λz)

ν in L2(Γ\G/K) =H0(Γ\G/K). By the unique-
ness of solutions in Sobolev spaces, Péz = vz in an L2-sense. But both func-
tions are continuous, so by the uniqueness of continuous functions in an L2-
equivalence class, Péz = vz in C0(Γ\G/K). �
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We refer to the sum over Γ as the geometric expression of the automorphic
fundamental solution and the integral over Ξ as the spectral expression of the
same.

3.3. Explicit formula for smoothed lattice-point counting. To extract
tangible information from this spectral identity, we use the following well-
known variant on the classical Perron method, which has the virtue of absolute
convergence.

Lemma 3.1.

1

2πi

∫ σ+iT

σ−iT

esX

s(s+ θ)(s+ 2θ) · · · (s+ �θ)
ds(3.23)

=

{
(1−e−θX)�

�!θ� +Oσ(
eσX

T �+1·X ) if X > 0,

Oσ(
eσX

T �+1·|X| ) if X < 0.

Theorem 3.3. For a complex semi-simple Lie group G of odd rank, with
maximal compact K and a co-compact lattice Γ, the number of lattice points
within an expanding region of the basepoint xo = 1 ·K is related to the auto-
morphic spectrum by the following explicit formula:

C̃G ·
∑

γ:| logaγ |<X

∏
α∈Σ+

α(logaγ)

2 sinh(
α(logaγ)

2 )
· 1

�!θ�
(
1− e−θ(X−| logaγ |))�(3.24)

=
(
A�,θ

|ρ| (X) · e|ρ|X +B�,θ
|ρ| (X) · e−|ρ|X)

·
∣∣Φ1(xo)

∣∣2
+

∑
Ξ−{Φ1}

∣∣Φξ(xo)
∣∣2 · (A�,θ

zξ
(X)ezξX +B�,θ

zξ
e−zξX +Per�,θzξ

(X)
)
,

where C̃G is an explicit constant depending only on the group, Φ1 is the con-
stant automorphic form, zξ is given by λξ = z2ξ − |ρ|2, A�,θ

zξ
(X) and B�,θ

zξ
(X)

are polynomial in X , of degree (ν − 1), and rational in zξ , and Per�,θzξ
(X) is

of exponential decay in X and rational in zξ .

Proof. The compactness of Γ\G implies that the spectrum Ξ is discrete,
and for G of odd rank, the spectral identity of Theorem 3.2, evaluated at the
basepoint, becomes

CG ·
∑
γ∈Γ

∏
α∈Σ+

α(logaγ)

2 sinh(
α(logaγ)

2 )
· e

−z| logaγ |

z
=
∑
ξ∈Ξ

|Φξ(xo)|2
(λξ − λz)ν

,(3.25)

where CG is an explicit constant depending only on the group G, and aγ is
given by γ = k · aγ · k′. We apply a Perron integral transform

(3.26) P�,θ(f)(X) =
1

2πi

∫
σ+iR

f(z) · z · ezX
z(z + θ)(z + 2θ) · · · (z + �θ)

dz
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to both sides of the identity. On the geometric side,

P�,θ

(
ez| logaγ |

z

)
(3.27)

=

∫
σ+iR

ez(X−| logaγ |)

z(z + θ)(z + 2θ) · · · (z + �θ)
dz

=

{
(1− e−θ(X−| logaγ |))�/(�!θ�) if X > | logaγ |,
0 if X < | logaγ |

by Lemma 3.1. Thus,

P�,θ

(
vz(xo)

)
(3.28)

=CG ·
∑

γ:| logaγ |<X

∏
α∈Σ+

α(logaγ)

2 sinh(
α(logaγ)

2 )
· 1

�!θ�
(
1− e−θ(X−| logaγ |))�.

On the spectral side, write λξ = z2ξ − |ρ|2. Then λξ − λz =−(z − zξ)(z + zξ),
and

P�,θ

(
|Φξ(xo)|2
(λξ − λz)ν

)
(3.29)

=
1

2πi

∫
σ+iR

(−1)ν |Φξ(xo)|2
(z − zξ)ν(z + zξ)ν

· ezX

(z + θ)(z + 2θ) · · · (z + �θ)
dz.

Move (−1)ν |Φξ(xo)|2 outside the integral, and evaluate by residues. The
residues of the poles at the spectrum z =±zξ are

A�,θ
zξ

(X) =
1

(ν − 1)!
lim
z→zξ

∂ν−1

∂zν−1

(
(z + zξ)

−ν ezX

(z + θ) · · · (z + �θ)

)
,(3.30)

B�,θ
zξ

(X) =
1

(ν − 1)!
lim

z→−zξ

∂ν−1

∂zν−1

(
(z − zξ)

−ν ezX

(z + θ) · · · (z + �θ)

)
.(3.31)

Visibly, these are polynomial in X and rational in zξ . When Φξ = Φ1 is the
constant automorphic form, λξ = 0⇒ zξ =±|ρ|. The sum of the residues of
the simple poles at z =−mθ is

(3.32) Per�,θzξ
(X) =

1

θ�−1

�∑
m=1

(−1)m−1e−mθX

(m− 1)!(�−m)!(z2ξ −m2θ2)ν
.

Thus,

(−1)νP�,θ

(
Péz(xo)

)
(3.33)

=
(
A�,θ

|ρ| (X) · e|ρ|X +B�,θ
|ρ| (X) · e|ρ|X

)
·
∣∣Φ1(xo)

∣∣2
+

∑
Ξ−{Φ1}

∣∣Φξ(xo)
∣∣2 · (A�,θ

zξ
(X)ezξX +B�,θ

zξ
e−zξX +Per�,θzξ

(X)
)
.
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Since vz(xo) = Péz(xo), by Theorem 3.2, we have the desired equality, with

C̃G = (−1)ν ·CG. �
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